
SFA Modernization Partner

United States Department of Education

Student Financial Assistance

Integrated Technical Architecture

Detailed Design Document

Volume 2 – Internet Architecture

Task Order #16

Deliverable # 16.1.2

October 13, 2000

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 i

Table of Contents

1 INTRODUCTION ... 1

2 INTERNET ARCHITECTURE OVERVIEW.. 2

3 TECHNICAL OVERVIEW... 4
3.1. REQUIREMENTS AND ASSUMPTIONS..4
3.2. SOLUTION ...4

4 TECHNICAL SERVICES AND INVOCATION METHODS.. 9
4.1. WEB BROWSER ..9
4.2. FIREWALL ...9
4.3. LOAD BALANCING..10
4.4. WEB SERVER ...10
4.5. APPLICATION SERVER...10
4.6. COMPONENT BROKER...11
4.7. CONTENT MANAGEMENT ..12
4.8. OPENDEPLOY ..13

4.8.1. DataDeploy ..13
4.8.2. Autonomy Interface..14
4.8.3. Viador Interface ..14

4.9. PORTAL...14
4.10. KNOWLEDGE MANAGEMENT..15
4.11. DIRECTORY SERVER..16
4.12. FILE STORAGE..16
4.13. DATABASE SERVER...17

5 DETAILED DESIGN SPECIFICATIONS...18
5.1. ITA SERVICE CLUSTER ARCHITECTURE ..18
5.2. ITA TOUCH-POINT SCENARIOS ..20

5.2.1. Touch-Point # 1 (Portal – SFA Application) ..21
5.2.2. Touch-Point # 2 (SFA application – Autonomy) ...23
5.2.3. Touch-Point # 3 (IHS – WAS static HTML) ...27
5.2.4. Touch-Point # 4 (IHS – WAS Servlet Flow) ...30
5.2.5. Touch-Point # 5 (IHS – WAS JSP Flow)..32
5.2.6. Touch-Point # 6 (IHS – WAS EJB Interaction) ...34
5.2.7. Touch-Point # 7 (Autonomy – Document Content Publishing)..................................36
5.2.8. Touch-Point # 8 (Autonomy – URL Content Indexing) ..39
5.2.9. Touch-Point # 9 (Autonomy – High Availability Configuration)................................42
5.2.10. ...44
5.2.11. Network Dispatcher Topology ...45

5.3. DATABASE SERVER ..50
5.4. COMPONENT INTEGRATION ...51

5.4.1. Viador Autonomy Portlet Integration..51
5.4.2. Interfaces With Other Applications...52
5.4.3. Search Engine Portal Integration...52

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 ii

5.4.4. Search Engine with the Content Management Tool...53
5.4.5. Message Board..53

6 PERFORMANCE CONSIDERATIONS..54
6.1. WEB BROWSER ..54
6.2. FIREWALL ...54
6.3. LOAD BALANCING..54

6.3.1. Guidelines on Proportions of Importance Settings ..54
6.4. WEB SERVER ...55
6.5. APPLICATION SERVER...55
6.6. COMPONENT BROKER...55
6.7. CONTENT MANAGEMENT ..55

6.7.1. Performance ...55
6.8. PORTAL...56
6.9. KNOWLEDGE MANAGEMENT ...57

6.9.1. Operational Monitoring..57
6.10. DIRECTORY SERVER..57
6.11. FILE STORAGE..57

6.11.1. AFS Client Tuning ...57
6.12. DATABASE SERVER...60

7 CONFIGURATION STANDARDS/REQUIREMENTS...61
7.1. WEB BROWSER ..61
7.2. FIREWALL ...61
7.3. LOAD BALANCING..61

7.3.1. Configuring and Managing ISS..63
7.4. WEB SERVER ...63
7.5. APPLICATION SERVER...63
7.6. COMPONENT BROKER...64
7.7. CONTENT MANAGEMENT ..64

7.7.1. TeamSite Server Configuration Requirements..64
7.7.2. Scalability ...65
7.7.3. Reliability ...66

7.8. PORTAL...66
7.8.1. Security ..67

7.9. KNOWLEDGE MANAGEMENT ...67
7.9.1. DRE Engine Configuration ...67

7.10. DIRECTORY SERVER..70
7.11. FILE STORAGE..70
7.12. DATABASE SERVER...71

8 APPLICATIONS DESIGN..72
8.1. WEB BROWSER ..72
8.2. FIREWALL ...72
8.3. LOAD BALANCING..72
8.4. WEB SERVER ...72

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 iii

8.5. APPLICATION SERVER...72
8.5.1. Web Application Design Model..72
8.5.2. SFA Web Application Architecture ...75

8.6. COMPONENT BROKER...78
8.7. CONTENT MANAGEMENT ..78

8.7.1. Design Principles ..78
8.7.2. Dependent branch pattern...84

8.8. PORTAL...86
8.8.1. Java Coding Conventions ...86
8.8.2. Standard Portlet Coding Template ...87
8.8.3. Code Commenting ...87
8.8.4. Portlet Generated HTML Pages and Error Messages ...87
8.8.5. Debugging and Exception Handling...88
8.8.6. Viador..88
8.8.7. Design Principles ..88
8.8.8. Java Coding Conventions ...88
8.8.9. Standard Portlet Coding Template ...89
8.8.10. Code Commenting ...89
8.8.11. Portlet Generated HTML Pages and Error Messages ...90
8.8.12. Debugging and Exception Handling...90

8.9. KNOWLEDGE MANAGEMENT ...90
8.10. DIRECTORY SERVER..90
8.11. FILE STORAGE..90
8.12. DATABASE SERVER...90

9 ADDITIONAL RESOURCES...91
9.1. WEB BROWSER ..91
9.2. FIREWALL ...91
9.3. LOAD BALANCING..92
9.4. WEB SERVER ...92
9.5. APPLICATION SERVER...92
9.6. COMPONENT BROKER...94
9.7. CONTENT MANAGEMENT ..95
9.8. PORTAL...96
9.9. KNOWLEDGE MANAGEMENT ...96
9.10. DIRECTORY SERVER..96
9.11. FILE STORAGE..97
9.12. DATABASE SERVER...97

10 PRODUCT OVERVIEWS...99
10.1. WEB BROWSER...99
10.2. FIREWALL..99
10.3. LOAD BALANCING .. 100

10.3.1. How the Dispatcher Function Works..101
10.3.2. ND Component ...102

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 iv

10.3.3. Dispatcher Functional Components ...104
10.4. WEB SERVER.. 104
10.5. APPLICATION SERVER ... 105
10.6. COMPONENT BROKER ... 113
10.7. CONTENT MANAGEMENT... 121

10.7.1. Private Workareas...123
10.7.2. TeamSite Elements ...123
10.7.3. TeamSite Users ...124
10.7.4. TeamSite Templating Model..125
10.7.5. Interwoven Production Topology ...129
10.7.6. Security ..132

10.8. PORTAL... 133
10.8.1. Single Point Of Access..133
10.8.2. Corporate Customization..134
10.8.3. End User Personalization ...134
10.8.4. Viador Portal Architecture..134
10.8.5. Viador Key Components ...135
10.8.6. Viador Technical Architecture...136
10.8.7. Viador Portlets ..136

10.9. KNOWLEDGE MANAGEMENT.. 141
10.9.1. Scope and Application..141
10.9.2. General Architecure...141
10.9.3. User (Client) Workstation ...142
10.9.4. Software Components ..142
10.9.5. Search Engine with the Dynamic Reason Engine (DRE)..142
10.9.6. HTTPFetch Spider ...143
10.9.7. AutoIndexer ..143
10.9.8. Network Communication ..144
10.9.9. Using Structured and Unstructured Data Searches ...144
10.9.10. Structured Information ..145

10.10. DIRECTORY SERVER.. 145
10.11. FILE STORAGE.. 145

10.11.1. Introduction...145
10.11.2. How AFS Works...145
10.11.3. AFS Concept..146
10.11.4. AFS Security ..149
10.11.5. AFS Architecture ..150

10.12. DATABASE SERVER... 165
11 ACRONYMS LIST..166

APPENDIX A: DETAIL OF DRE CONFIGURATION SECTIONS....................................170

APPENDIX B: DETAIL OF AUTOINDEXER.CFG SECTIONS..190

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 v

List of Figures

Figure 1 – Internet Architecture Context... 1

Figure 2 –Internet Architecture Components.. 3

Figure 3 – IA Implementation... 6

Figure 4 – IA Subsequent Implementation.. 7

Figure 5 – ND Cluster Architecture ...19

Figure 6 – Touch Point # 1 – Detail Diagram: Portal SFA Application21

Figure 7 – KB API SERVLET FRAGMENT..24

Figure 8 – Touch Point # 2 – Detail Diagram..25

Figure 9 – Touch Point # 3 – Detail Diagram: Static HTML Flows Within WebSphere
Application Server (WAS) ...28

Figure 10 – Touch Point # 4 – Detail Diagram: Servlet Flows Within the WebSphere
Application Server (WAS) ...30

Figure 11 – Touch Point # 5 – Detail Diagram: JSP Flows Within WebSphere Application
Server (WAS)...32

Figure 12 – Touch Point # 6 – Detail Diagram: EJB Interaction...34

Figure 13 – Touch Point # 7 – Detail Diagram: Document Publishing Indexing Process Flow
..37

Figure 14 – Touch Point # 8 – Detail Diagram: Indexing of URL Content40

Figure 15 – Touch Point # 9 – Detail Diagram: High Availability Solution43

Figure 16 – Network Dispatcher Topology..45

Figure 17 – Network Dispatcher SFA Configuration..46

Figure 18 – Network Dispatcher IP Packet Flow ..46

Figure 19 – Viador Autonomy Portlet Integratoin ..51

Figure 20 – Search Engine Portlet ..53

Figure 21 - Web Application Design Model ...73

Figure 22 - Logically independent Web content goes into single-branch80

Figure 23 - Multiple independent Website, or “agency pattern...82

Figure 24 - The Longterm / Shortterm branch pattern ...84

Figure 25 - The Dependent Branch Pattern ..85

Figure 26 - IA Firewall Port Penetrations...100

Figure 27 – TeamSite Server ..122

Figure 28 – TeamSite Workflow ..123

Figure 29 - The templatedata directory is at the highest level in the hierarchy.126

Figure 30 –TeamSite Templating Overview ...128

Figure 31 - TeamSite Content Dataflow ...131

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 vi

Figure 32 - Viador Portal Architecture...135

Figure 33 - Viador Technical Architecture..136

Figure 34 – Viador SFA Portlets...137

Figure 35 – Viador Porlet Architecture...138

Figure 36 – Viador Control Flow ...139

Figure 37 - Autonomy Architecture...141

Figure 38 – Example DRE Implementations...143

Figure 39 - AFS File System...152

Figure 40 - AFS Volume Structure...153

Figure 41 - AFS Mount Points..154

Figure 42 - @sys variable on the Solaris platforms..161

Figure 43 - Relationship Between the Volume Pointers, Headers, Files and Directories......162

Figure 44 - Graphical Representation of Traversal Rules..163

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 vii

List of Tables

Table 1 – Internet Arc hitecture Components.. 2

Table 2 – IA Requirements and Assumptions... 4

Table 3 – IA Component COTS Products.. 7

Table 4 – Services – Web Browser... 9

Table 5 – Services – Firewall ... 9

Table 6 – Services – Load Balancing...10

Table 7 – Services – Web Server...10

Table 8 – Services – Application Server ..10

Table 9 – Services – Component Broker Component..11

Table 10 – Services – Content Management ...13

Table 11 – Interfaces - Content Management Services Interfaces ..13

Table 12 – Services – Portal..14

Table 13 – APIs – Portal Services..15

Table 14 – Services – Knowledge Management..15

Table 15 – Services – Directory Server..16

Table 16 – Services – File Storage...17

Table 17 – Services – Database Server ..17

Table 18 – ITA Service Clusters..18

Table 19 – Touch Point # 1 – Step-by-Step Description...22

Table 20 – Touch Point # 2 – Step by Step Description ...25

Table 21 – Touch Point # 3 – Step by Step Description ...28

Table 22 – Touch Point # 4 – Step by Step Description ...31

Table 23 – TouchPoint # 5 – Step by Step Description..33

Table 24 – Touch Point # 6 – Step by Step Description ...35

Table 25 – Touch Point # 7 – Listing of IDX File Entries ...36

Table 26 – Touch Point # 7 – Step by Step Description ...38

Table 27 – Touch Point # 8 – Step by Step Description ...40

Table 28 – Touch Point # 9 – Step by Step Description ...43

Table 29 – Protocol Definition for ND System Load Balancing...50

Table 30 – Advisor Protocols and Ports..50

Table 31 – TeamSite Server Cache..64

Table 32 – Client Compatibility ...66

Table 33 – Additional Resources: Web Browswer..91

Table 34 – Additional Resources - Firewall ..91

Table 35 – Additional Resources – Load Balancing..92

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 viii

Table 36 – Additional Resources – Web Server ..92

Table 37 - Additional Resources – Application Server..93

Table 38 – Additional Resources – Component Broker...94

Table 39 – Additional Resources – Content Management...95

Table 40 – Additional Resources – Portal...96

Table 41 – Additional Resources –Knowledge Management..96

Table 42 – Additional Resources – Directory Server...96

Table 43 – Additional Resources – File Storage ..97

Table 44 – Additional Resources – Database Server ...97

Table 45 – Datacapture.cfg Directory Hierarchy...126

Table 46 – Autonomy Spider ...144

Table 47 – List of Acronyms ..166

Table 48 – [Licencse] Section of DRE Configuration File...170

Table 49 – [Server] Section of DRE Configuration File ..170

Table 50 – [Schedule] Section of DRE Configuration File..174

Table 51 – [Default] Section of DRE Configuration File ..174

Table 52 – [Fields] Section of DRE Configuration File...178

Table 53 – [Index Summary] Section of DRE Configuration File179

Table 54 – [Index Cache] Section of DRE Configuration File...180

Table 55 – [dbname] Section of DRE Configuration File ...180

Table 56 – [MySecuritySection] Section of DRE Configuration File...................................180

Table 57 – [License] Section of DRE Configuration File ..181

Table 58 – [Default] Section of DRE Configuration File ..181

Table 59 – [Default Spider Section] Section of DRE Configuration File182

Table 60 – [Configuration] Section of the autoindexer.cfg File ..190

Table 61 – [Default] Section of the autoindexer.cfg File ..191

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 1

1 Introduction

The Internet Architecture (IA) supports the development, execution, and operation of web
browser-based applications. It is composed of several independent components that
integrate together to provide an overall net-centric capability. The integrated solution
provides a maintainable, extendible, manageable solution that encourages and facilitates
reuse and reduces development time by leveraging the architecture. It provides value by
adapting existing legacy applications and standardizes application development, allowing
for significant flexibility and cost savings.

The IA is the part of the Execution Architecture that provides the user dialog through a Web
interface. Users of the Integrated Technical Architecture (ITA) access the Student Financial
Assistance (SFA) systems through personalized information portals. These portals provide
context sensitive access to legacy applications and enable users to search content by relevant
subject. The IA bridges both the Internet and Intranet user community to the legacy SFA
environment using the Enterprise Application Integration (EAI) Architecture and Data
Warehouse Architecture. The Security Architecture insures that the Internet Architecture
restricts and permits access appropriately for the user’s permission.

The following diagram illustrates the IA context within the ITA:

Internet Data Warehouse

Legacy Security

Enterprise Application Integration (EAI)

Internet Architecture Context Diagram

Figure 1 – Internet Architecture Context

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 2

2 Internet Architecture Overview

The IA is composed of equipment and commercial-off-the-shelf (COTS) applications. These
components are specified and configured to provide superior performance and high
availability.

The IA equipment consists of enterprise class servers. The servers utilized are Sun 3500
Solaris systems and other new technology (NT) based systems. The Sun 3500 Solaris systems
are used for computationally intensive applications and applications requiring high
availability. The NT based systems are used for applications that specifically require NT.

The IA applications consist of already existing Internet based applications augmented with
other applications being deployed which interface with legacy enterprise SFA applications.
The IA provides a way to integrate these applications through an information portal. Access
to the already existing Internet based applications are through hypertext markup language
(HTML) uniform resource locator (URL) links to the present Website. Other applications
being deployed utilize the services of the IA as a function platform.

The IA COTS products consist of best-of-breed commercial applications that are integrated
through standards-based application programming interfaces (API). Integrating these
products through standards-based APIs enables other COTS products to be utilized when
appropriate.

The IA framework is comprised of a set of components that provide the required services for
a robust and secure Internet and Intranet environments. The principal functional
components of the IA are listed in the following table.

Table 1 – Internet Arc hitecture Components

Component Description

Web Browser

Allow users to view and interact with applications and documents made up of varying
data types, such as text, graphics, and audio.

Provides support for navigation within and across documents no matter where they are
located, through the use of links embedded into the document content.

Firewall
Protects sensitive resources or information attached to a network from unauthorized
access. A variety of firewall implementations may be required at various levels within
the SFA network model.

Load Balancing Distributes IP traffic across a set of SFA application servers to achieve high availability
and predicable performance.

Web Server Enable SFA to manage and publish information and deploy network-centric applications
over the Internet (public) and Intranet (private) environments

Application Server
Extend SFA capability by supporting net-centric applications as well as providing an
application architecture for enabling the development and execution of common services
across different business capabilities.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 3

Component Description

Component Broker An Object-Oriented enterprise solution for distributed computing, providing a scalable,
manageable environment for developing and deploying component based solutions.

Content Management
Manages the Website content set in a process-oriented fashion using configuration
control methods. It provides content versioning and supports both structured and
unstructured content formats.

Portal Provides a customizable and personalized view as a single access point to a wide variety
of heterogeneous data sources.

Knowledge Management
Provides an informative searching and retrieval capability for both structured and
unstructured content. Information that can be searched includes but is not limited to
documents, spreadsheets, HTML-based files, e-mail messages and electronic news feeds.

Directory Server

Act as a central data repository that simplifies communication and sharing of resources.
It allows diverse applications, machines, and users (both inside and outside the
enterprise) to access consistent information and services. This simplifies such tasks as
electronic-mail addressing, maintenance of computing environments, and user
authentication and authorization.

File Storage
Implements a secure and persistent network file system. Caching is utilized to ensure
efficient resource utilization. High availability is achieved through replication of file
systems and encapsulation of Storage Area Network (SAN) resources.

Database Server
Responsible for providing access to the operational data store (ODS). Maintains integrity
of the data within the database and supports the ability to store data on either a single
physical platform, or across multiple platforms.

These components are discussed in detail in Section 5. The following diagram illustrates the
principal components of the IA and lists the principal services they provide.

W e b B r o w s e r

� Presentat ion d isp lay

� User in teract ion

� Server communica t ion

Firewal l

� Internet secur i ty

L o a d B a l a n c i n g

� Network address t rans la t ion

� Work load d is t r ibut ion

� High avai labi l i ty

W e b S e r v e r

� Appl icat ion serv ices

� Presentat ion logic

� Cl ient communicat ion

Appl ica t ion Server

� Bus iness componen t
a c c e s s

� W e b c o m m u n i c a t i o n s

C o m p o n e n t B r o k e r

� Bus iness componen t
administrat ion

� Bus iness componen t
in ter faces

C o n t e n t M a n a g e m e n t

� Author i t y and vers ion ing

� Categor izat ion and
pub l ish ing

� Development co l laborat ion

Portal

� Sing le User Access po in t

� Customizat ion

� Personal izat ion

K n o w l e d g e M a n a g e m e n t

� Search serv ices

� Alerter

� Mailer

D i r e c t o r y S e r v e r

� R e s o u r c e A c c e s s C o n t r o l

� Name and Doma in Se rv i ces

Fi le Storage

� Per is tent f i le s torage

D a t a b a s e S e r v e r

� In format ion Reposi tory

� Repl icat ion

In ternet Archi tecture Components

Figure 2 –Internet Architecture Components

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 4

3 Technical Overview

3.1. Requirements and Assumptions

The design of the IA is based on a critical set of technical requirements and assumptions.
These requirements and assumptions determine the basic relationship of the individual IA
components and the entire solution. The following table lists the principal requirements and
assumptions, and presents their rational.

Table 2 – IA Requirements and Assumptions

Technical Requirements
and Assumptions Rationale

Scalability

The SFA solution supports both horizontal and vertical scaling. Horizontal scalability
is achieved through application replication and load balancing. Vertical scalability is
achieved through server chassis selection that allows both processing and data
capacity expansion.

Reliability
The SFA solution achieves high availability through application and asset replication.
Clustering techniques are not required for the SFA solution, although specific
opportunities may require the use of clustering or clustering-like solutions.

Performance

The SFA equipment , COTS product and application configuration is based on
engineering estimates derived from observation of existing systems and commercial
best-practice implementation patterns typical of systems with equivalent user
communities.

Security

The initial release of the SFA solution implements authentication via Viador and
application specific means. Other applications and COTS products may utilize a
Viador API to determine the authentication parameters. Subsequent releases of the
SFA solution would implement a standards-based security architecture.

Established commercial best-practice implements separate Internet and Intranet
content via separate Websites. Although the information portal COTS product
provides access control to content based on user assigned group, content isolation
using separate assets and content partitioning is a superior defense against intentional
and unintentional security penetration.

Department of Education security policy prohibits any web-browser active (dynamic)
components

3.2. Solution

The IA is implemented as a set of servers that are interconnected via the Virtual Data Center
(VDC) local area network (LAN). The VDC environment supports the servers and provides
for system management. Other VDC assets provide essential services such as storage and
archive of storage.

The IA servers were selected and configured with redundant components that are essential
for sustaining operation. These essential components are power supply, processor, storage,
and input/output.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 5

Reliable power is achieved by using redundant power supplies and supplying separate
power to each power supply. The VDC is responsible for providing and maintaining
separate sources of conditioned power to insure that a power interruption event is isolated to
only half the power source and corresponding power supplies.

The use of symmetric processing insures that processor failure only degrades performance
and does not disable the entire server. The selected server family supports modular
processor components. The use of modular processor components within the same server
family allows spare processors to be acquired and managed efficiently. The spare processors
would be available to support recovery of any server. Recovery from a processor failure may
require cycling the server but once cycled the server would be available.

Implementation of the system storage installs two types of storage – the first is storage
available within the system and the second is storage available via network. The system
installed storage units provide for the operating system and the storage required for
operation and management of the system. The system storage units are redundant and the
stored information is replicated in order to survive storage errors and general storage failure.
Network storage is utilized for bulk storage. Network storage provides reliable information
retention and supports sharing of information across servers.

Survivable input/output is achieved by using redundant adapters and configuring access to
redundant networks. Using redundant adapters and having access to redundant networks
also enables input/output balancing. Failure of an adapter or a network may impact
performance but the application should persist. Recovery from an adapter failure is possible
by switching network connections to an available adapter. Recovery from a network failure
should be transparent with automatic recovery.

Internet and Intranet connectivity is provided by the VDC. The VDC maintains redundant
Internet connectivity through separate service providers and arranges for adequate capacity.

The server equipment utilizes the VDC LAN for connectivity between the servers and other
VDC equipment such as network storage and legacy systems. Connectivity between the
servers for application specific traffic may require the deployment and configuration of
dedicated sub-networks. The IA implementation is phased to support an initial application
deployment with limited user community and a subsequent deployment to address other
applications and users.

The following diagram illustrates the initial deployment of the IA equipment and the
allocation of COTS products to the equipment.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 6

VDC
LAN

VDC
LAN

VDC
LAN

EDLAN

MQSeries
IntegratorI
MQSeries

Autonomy

Oracle 8i Oracle 8i

Autonomy

MicroStrategy

MicroStrategy &
Internet Inf Server

Informatica

MQWorkflow
MQSeries

USDOED
Systems

Intranet Client

Build & Test
System

VDC
LAN

IBM HTTP
Server (IHS)

IHS & VIC

IHS &
Viador Info

Center (VIC)

IBM HTTP
Server (IHS)

WA
S

Internet Client

DMZ
LANThe Internet

FWFW

Legacy Systems

Operational Data
 Store (ODS)

Oracle 8i

ODS
Oracle 8i

MicroStrategy

WebSphere
App Server

(WAS)

CISCO
Local Director

CISCO
Local Director

NT SU
N

HP

13 SUN E3500
3 NT Servers

Mainframe
HP-UX

IBM eND*
AFS

IBM eND
AFS*

Figure 3 – IA Implementation

The following diagram illustrates a potential subsequent deployment of the IA equipment
and the allocation of COTS products to the equipment. This configuration supports separate
Internet and Intranet equipment and more extensive redundancy for critical servers. The
separation of Internet and Intranet Website domains enhances security by physically
separating the Website content and presenting a unique set of Website addresses.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 7

VDC
LAN

VDC
LAN

VDC
LAN

EDLAN

MQSeries
IntegratorI
MQSeries

Autonomy

Oracle 8i Oracle 8i

Autonomy

MicroStrategy

MicroStrategy &
Internet Inf Server

Informatica

MQWorkflow
MQSeries

USDOED
Systems

Intranet Client

Build & Test
System

VDC
LAN

IBM HTTP
Server (IHS)

IHS & VIC

IHS &
Viador Info

Center (VIC)

IBM HTTP
Server (IHS)

WAS

Internet Client

DMZ
LANThe Internet

FWFW

Legacy Systems

Operational Data
 Store (ODS)

Oracle 8i

ODS
Oracle 8i

MicroStrategy

WebSphere
App Server

(WAS)

CISCO
Local Director

CISCO
Local Director

NT SUN HP

13 SUN E3500
3 NT Servers

Mainframe
HP-UX

IBM eND*
AFS

IBM eND
AFS*

Intranet
Servers

IBM HTTP
Server (IHS)

IHS & VIC

IHS &
Viador Info

Center (VIC)

IBM HTTP
Server (IHS)

WAS

WebSphere
App Server

(WAS)

Figure 4 – IA Subsequent Implementation

The IA consists of 12 architectural components. The components partition the functional
capabilities of the IA and provide a method to identify suitable COTS products to implement
the IA. Some of the components are supplied by the Department of Education (DOE) or are
native capabilities of the VDC. The following table lists each of the 12 architectural
components of the IA, the COTS product or products selected to implement the component,
and the respective source (IA or VDC) of the component. The specific version of each COTS
product is specified in the table that follows.

Table 3 – IA Component COTS Products

Component Product Source

1 Web Browser Microsoft Internet Explorer, Netscape Navigator, or Lynx N/A

2 Firewall Check Point FireWall-1 VDC

3 Load Balancing IBM eNetwork Dispatcher IA

4 Web Server IBM HTTP Server IA

5 Application Server IBM WebSphere Application Server Enterprise Edition IA

6 Component Broker IBM Component Broker IA

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 8

Component Product Source

7 Content Management Interwoven TeamSite IA

8 Portal Viador Portal Suite IA

9 Knowledge Management Autonomy Knowledge Suite IA

10 Directory Server Netscape Directory Server VDC

11 File Storage IBM AFS IA

12 Database Server Oracle 8i VDC

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 9

4 Technical Services and Invocation Methods

The IA components establish and provide functional services that enable the SFA
applications. These services form a rich and efficient service-oriented layer and are the
preferred methods for applications to invoke and utilize the IA. The following sections,
organized by architectural component, identify and functionally describe the services. The
principal architectural components are described and when appropriate the application
invocation method is identified.

4.1. Web Browser

The Web Browser component is the user access mechanism to the IA. The component is a
standard COTS product that implements the hypertext transfer protocol (HTTP) protocol,
and renders HTML. The Web Browser services provide retention of the link connection, i.e.,
document physical location, and mask the complexities of that connection from the user. The
following table identifies and describes the services provided by this component.

Table 4 – Services – Web Browser

Service Functional Description

Server Communication
Utilizes standard protocols to establish a data connection to the server, transfer
data, and terminate the connection.

Communication Security
Interoperable methods of securing the communications channel between the client
and the server using secure protocols, e.g. SSL.

Presentation Services
Renders text, graphics, and other user interface components. Utilizes HTML as
the content description language.

4.2. Firewall

The Firewall component protects SFA resources against direct and indirect intrusion. Access
is managed using policy-driven restrictions on network connections, protocols, and data
formats, and application-driven restrictions on data exchanges by applications and
individuals.

Table 5 – Services – Firewall

Service Functional Description

Packet Filtering
Protocol-based services check the address portion of data packets to determine the
desired destination and intent. Administrators can block certain combinations
that are categorized as unauthorized.

Proxy Services

Establishes a shielding or screening of the server address which is typically placed
between the Internet router and the private network assets to be protected. Proxy
servers shield users from knowing the specific addresses of servers within the
private network.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 10

4.3. Load Balancing

The Load Balancing component distributes workload across a set of applications and
associated servers. The following table identifies and describes the services provided by this
component.

Table 6 – Services – Load Balancing

Service Functional Description

Network Address Translation

Distributes URL and other client-server workload across a set of servers using
network address translation. Load balancing is achieved using various algorithms
that account for resource availability in order to insure reasonable response time.
Virtual address support allows the client request to be distributed across a set of
servers and each client is only aware of the virtual address.

4.4. Web Server

The Web Server component manages document requests in formats such as HTML, PDF, etc.

The following table identifies and describes the services provided by this component.

Table 7 – Services – Web Server

Service Functional Description

Client Communication
Uses HTTP to establish a data connection to the server, transfer data, and tear-
down the connection.

Communication Security
Interoperable method of securing the communications channel between the client
and the server using SSL.

Dynamic Page Services
Utilizes JSP to execute commands that are embedded in the presentation data to
allow for run-time binding of presentation and data.

Application Services
A servlet based method to execute commands that interact with external systems
and components, returning data to the requesting client.

4.5. Application Server

The Application Server component provides access to legacy systems, databases, and other
application servers through a reusable and consistent application architecture. Applications
are supported within a standards-based open development environment that provides the
ability to use object-oriented technologies.

The following table identifies and describes the services provided by this component.

Table 8 – Services – Application Server

Service Functional Description

Run-Time Services
A Java/CORBA compliant application environment. Java Virtual Machine (JVM)
compliant with Java 1.2 or greater.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 11

Service Functional Description

Application Services
Programmatic specification of business logic in a reusable, component manner
using an Enterprise JavaBeans implementation and behavior model.

Database Services A JDBC API to database systems, regardless of database vendor.

Transport Services
Guaranteed message delivery service between components. A JMS/Javamail
unified programming interface to external email and messaging servers,
regardless of server vendor.

Directory Services A JNDI facility used to discover remote network resources.

Transaction Management
A JTA based service allows multi-step processes to succeed or fail as an atomic
unit.

Object Communications
Standard approach for objects to call the methods of other objects and RMI/IIOP
ability to communicate across the network to CORBA objects.

Data Typing and Encryption
A JAF facility that helps components determine the data type of an arbitrary data
stream, then encapsulate that stream into a known object format.

4.6. Component Broker

The Component Broker (CB) component provides implementation services to business
objects or enterprise beans. Some of these object services are administrative in nature and
their behavior is controlled by qualities-of-service configured through the management tools.
Other services are presented to business object implementors as interfaces, and others are
built into the infrastructure and work on behalf of the business logic.

For more information, see the International Business Machines (IBM) Component Broker
Advanced Programming Guide.

The following table identifies and describes the services provided by this component.

Table 9 – Services – Component Broker Component

Service Functional Description

Concurrency Control Service

The Concurrency Control Service consists of a set of interfaces that allow an
application to coordinate access by multiple transactions or threads to a shared
resource. When multiple transactions or threads try to access a single resource at
the same time, any conflicting actions are reconciled so that the resource remains
in a consistent state.

Event Service

The Event Service defines a channel between multiple objects which defines their
roles and allows them to communicate asynchronously. There are two defined
roles: supplier objects and consumer objects. Suppliers produce events, while
consumers process events.

Notification Service

CB’s Notification Service contains event channels that act as supplier and
consumer objects. These event channels allow multiple suppliers to communicate
with multiple consumers asynchronously and without confusing the many low-
level details within the objects.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 12

Service Functional Description

Externalization Service
The Externalization Service provides a mechanism by which objects are able to
save and restore their state in a non-object form. This allows the object’s state to
exist independently of the object itself.

Identity Service

CB derives an object identity from relative information that positions the object
within its container, server, host, and domain. This information can be used
within the CB Managed Object Framework to uniquely identify each object from
any other object in the distributed system.

Life Cycle Service

A Life Cycle Service provides operations for creating, copying, moving, and
deleting objects in a distributed environment. The Life Cycle Service in CB
provides a level of abstraction between the client program creating an object and
the determination of the location where that new object will exist.

Naming Service

The CB Naming Service allows you to create naming hierarchies so you can easily
locate objects. In conjunction with other services, clients can navigate through
different naming context trees to locate specific objects. CB Naming Service
handles both absolute and relative paths.

Security Service

The Security Service is used primarily to prevent end users from accessing
information and resources that they are not authorized to use. This predominantly
covers distributed business objects, but by extension includes any of the
information and resources from other non-object-oriented or non-distributed
sources used by those business objects.

Transaction Service

The Transaction Service enables programmers to implement transactions by using
standard object-oriented interfaces in a distributed environment. CB uses the
Transaction Service to ensure that each application has correctly grouped the
updates in the transaction so that the data is always updated consistently.

Session Service

The Session Service provides detailed information for applications in a distributed
object environment to control the extent of a session and the application profile
and arbitrary session properties that are relevant within the scope of that session.
The scope of the session is defined to exist between the point when the session is
started and the point when the session is ended.

Query Service

The Query Service enables you to find objects in a CB collection based on a set of
conditions described with an object-oriented structure query language (OOSQL).
The OOSQL enables you to describe complex search criteria. It is a extension of
SQL with features for handling object collections, object attributes, and methods in
query statements.

Cache Service

The Cache Service enhances concurrency and performance by supporting
optimistic and pessimistic caching of data. In optimistic caching, frequently used
data is cached in the memory of the CB server and not reread from the database on
each transaction. Cached data is invalidated based on a time-out value.

Workload Management

The Workload Management capability allows the CB run time to dynamically
allocate an application server to process a request. As more clients use an
application, the amount of work increases and the load on the servers increases.
The key to workload distribution in CB is the use of a server group to define
multiple application servers with a common configuration.

4.7. Content Management

The Content Management component manages Website content delivery from the
development environment to the production environment.

The following table identifies and describes the services provided by this component.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 13

Table 10 – Services – Content Management

Service Functional Description

Authoring
Allows users to associate and launch development applications against the content
managed by the component.

Versioning
Maintains versions of each individual Website content artifact. The individual
content versions are associated with Website configurations or releases.

Categorization & Publishing
Manages groups of content artifacts according to user defined criteria and
supports publishing of these content artifacts.

Development Collaboration & Workflow

Provides process control and related methods that support collaboration between
personnel in the development community and production community. The
collaboration and workflow utilities provide a methodical way to insure that
content change is appropriately authorized.

Integrates Multiple File Types
Any file type is supported. The Interwoven product is not aware of or dependent
on the file type.

Summarization
Produces a summary report of a configuration or release and the Website content
artifacts that were delivered from the development environment to the production
environment.

The following table identifies the interfaces between the Interwoven COTS product that
implements the Content Management component and the other IA components.

Table 11 – Interfaces - Content Management Services Interfaces

Service Invoked API Results of call

Deploy content Open Deploy Perl Script Delta file created

DAS Automatically N/A Updated content

4.8. OpenDeploy

Interwoven OpenDeploy is an enterprise-class content replication solution for the Website
content. It provides a secure, flexible and scalable solution for cross-platform, transactional
content transfer from development servers to production servers.

OpenDeploy allows a secure reliable method to transfer files to Development and Production
servers. It has a “rollback” feature to quickly regenerate previous version of a Website, and
can be utilized to schedule, automate and synchronize content deployment activities.

4.8.1. DataDeploy

The interface between TeamSite and the database server works with Templating to update
Database server from metadata captured in Template, and utilizes a DBD module to
communicate with Oracle.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 14

4.8.2. Autonomy Interface

It is possible to interface Autonomy with OpenDeploy by using an external task. This script
can launch the Autonomy application to spider content that had recently been deployed.

Another approach is scheduled deployments. OpenDeploy can be scheduled to put content
onto the Web at certain intervals. The Autonomy product can spider the content after all the
content has been updated. Since the content is going to be relatively small updates should
not take large amounts of time or resources.

4.8.3. Viador Interface

There is no need for an interface between these products.

4.9. Portal

The Portal component provides a customizable and personalized interface as a single access
point to a wide variety of heterogeneous data sources including Website content, documents,
and existing applications.

The following table identifies and describes the services provided by this component.

Table 12 – Services – Portal

Service Functional Description

Single Point Of Access

The portal provides a single interface in which to access a wide variety of
heterogeneous data sources within SFA. These heterogeneous data sources can
consist of the following: structured data such as content documentation,
unstructured data such as intranet and Internet Web content and existing
enterprise applications.

Customization

The portal can be customized to provide access to a range of data sources and
applications based on the users and their roles. These roles can be defined by the
SFA system administrator and then applied to the categories of SFA users such as
students, schools, etc.

Personalization

The portal can be personalized by selecting from the catalog of data sources and
applications accessible according to the assigned roles of the SFA users. This
allows the SFA users the ability to quickly locate required information and filter
extraneous information.

Authorization
The portal provides usage authorization to control the level of granular access an
SFA user has to the portal itself. This is organized by individuals, roles, or groups
as defined by the SFA system administrator.

Authentication
The portal provides authentication as the process of uniquely identifying a specific
SFA user and maintaining the accessibility of information as defined in the
customization performed by the SFA system administrator.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 15

The following table identifies the APIs for the services provided by this component.

Table 13 – APIs – Portal Services

Service API Functionality

Customization Viador Repository (VR)

This Java API provides access to Viador
Repository information in order to
support customization services such as
creation and maintenance of users,
groups, channels, etc.

Customization Viador Portal Customization (VPC)

This JavaScript API provides access to
Viador Repository information in order
to support customization services such
as creation and maintenance of users,
groups, channels, etc.

Configuration Viador Portlet (VP)

This API provides for the integration of
third-party applications by providing a
skeleton for creating an application as a
portlet.

Authentication Viador Open Authentication (VOA)
This API provides for the integration of
the portal with other authentication
systems.

Searching Viador Data Feed (VDF)
This Java API provides access to the
search engines and document
management systems for the portal.

4.10. Knowledge Management

The Knowledge Management component provides the information search and retrieval
capability. This component offers various search types on different data groups as
unstructured digital information, structured data, word processing documents, HTML-based
files, e-mail messages and electronic news feeds. This product is able to support a thesaurus
query if a thesaurus is loaded into the environment.

The following table identifies and describes the services provided by this component.

Table 14 – Services – Knowledge Management

Service Functional Description

National Language Search A search capability specified as a subject/verb criteria.

Boolean Search A structured search capability specified as a Boolean or logical expression criteria.

Proximity Search A search capability based upon a text delta algorithm.

Proper Names Search A search capability restricted to proper names.

Simple keyword A search capability based on a key text string.

Query Search A search capability based on user queries.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 16

Service Functional Description

Bracketed Boolean Search A search capability specified as a continuation of Boolean or logical expression
contents.

Mailer A scheduled process that queries the DRE and sends the results to the users either
as a list of links to content in a single message, or the content itself in a separate
messages.

Alerter A feature that will direct a large flow if information to those individuals who have
an interest in it.

4.11. Directory Server

The Directory Server component manages information common to applications, individuals,
and groups of individuals.

The following table identifies and describes the services provided by this component.

Table 15 – Services – Directory Server

Service Functional Description

Name Services

A logical component of directory services provided to create a logical
"pronounceable" name in place of a binary machine number. These services are
used by other communication services such as file transfer, message services, and
terminal services.

Domain Services

Provide a mechanism by which various nodes are recognized. These services use
the domain portion of an address to transport the data to the corresponding node.
Therefore, Domain Services are functions that track and recognize different logical
organizations and then map them to physical resources as tracked by the Naming
Services.

Single Sign-on Services

Supports a single sign-on capability by providing a common user authentication
repository and a standards-based access method. Single sign-on is actually
implemented in association with other products, but the essential framework is
LDAP.

Personalization Preferences
Individual and groups of individuals may be associated with preferences. This
capability manages these preferences on both a global basis and per application

Authentication
User sign-on is verified using a password. User passwords are administered with
security controls.

Access Control
User access to applications and specific files may be controlled. Access controls
may be allocated and enforced for individuals or for a group of individuals.

4.12. File Storage

The File Storage component provides an IA file system hierarchy that utilizes the VDC SAN.
The Andrew File System (AFS) is used to achieve performance and high availability.

The following table identifies and describes the services provided by this component.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 17

Table 16 – Services – File Storage

Service Functional Description

Fileserver Handle requests at the file and directory level.

Volume Management Handles operations at the volume level.

Consistency Checking Checks the system for internal consistency and repairs errors it finds.

Authentication Responsible for maintaining the Authentication Database.

Access Control Responsible for maintaining the Protection Database.

Cache Management
Responsible for maintaining the database and for providing the Cache Manager
with information about volumes and volume location.

File System Backup
Responsible for maintaining the Backup Database and for providing an interface
to the AFS Backup System.

File System Synchronization
Responsible for transferring information from System Control Machines (SCM)
and Binary Distribution Machines (BDM) to other AFS servers.

Directory Distribution Responsible for distributing the contents of a specified directory.

Time Synchronization Synchronizes an AFS server’s clock with the clock on another machine.

4.13. Database Server

The Database Server component provides a consistent relational interface to information
contained in a database. The component supports high performance storage and retrieval of
structured data.

The following table identifies and describes the services provided by this component.

Table 17 – Services – Database Server

Service Functional Description

Storage Services

Manage data physical storage. These services provide a mechanism for saving
information so that data will live beyond program execution. Data is often stored
in relational format (an RDBMS) but may also be stored in an object-oriented
format (OODBMS) or other formats such as IMS, VSAM, etc.

Indexing Services

Provide a mechanism for speeding up data retrieval. In relational databases one
or more fields can be used to construct the index. So when a user searches for a
specific record, rather than scanning the whole table sequentially the index is used
to find the location of that record faster.

Security Services

Enforce control regarding which records authorized users can view and edit, and
which functions they can execute. Most database management systems provide
data access control at the database, table and row levels, and execution control for
stored procedures, database functions, etc. to specific users and groups.

Access Services
Enable an application to retrieve data from a database as well as manipulate
(insert, update, delete) data in a database. SQL is the primary approach for
accessing records in today’s database management systems.

Replication Services
Support an environment in which multiple copies of databases must be
maintained.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 18

5 Detailed Design Specifications

The SFA ITA consists of an integrated set of COTS products. This integration is described by
elaborating each COTS product interface, or touch-point, with other COTS products and with
the SFA applications. The following material describes the architecture as a partition of
service clusters and further describes the interface between these clusters via scenarios.
These scenarios model the information flow through the touch-point.

5.1. ITA Service Cluster Architecture

The ITA architecture provides a high availability solution for the implementation of SFA
applications. This architecture is partitioned across a set of Web Server/Application Server
(WS/AS) clusters to specifically support IBM HTTP Server/WebSphere Application Server
(IHS/WAS) and COTS product integration in a consistent fashion and to achieve efficient
resource load balancing. This architecture achieves high availability using the IBM
SecureWay Network Dispatcher (ND) COTS product to manage Web-site traffic. ND utilizes
performance metrics to load balance SFA application Web-site traffic and automatically
senses WS/AS cluster resource failure to route application traffic to the available cluster
resource.

Other clusters are used to achieve high availability for critical application services. The
Release 1 architecture and design utilizes a ND cluster for the Web-site search engine service.
The search engine cluster design operates in a similar manner as the WS/AS cluster, where
the SFA application behaves as a Web Browser component and the search engine behaves as
a Web Server component.

The Release 1 architecture and design consists of the following ND clusters listed in the
following table.

Table 18 – ITA Service Clusters

ND Cluster Description

Portal Cluster

The portal cluster consists of a redundant IHS and Allaire JRun COTS product
application server (AS) configuration. The JRun AS is utilized because of specific
product integration requirements of the Viador portal COTS product. This cluster
configuration is unique to Release 1 and is not required once Viador is migrated to the
WAS environment.

Application Cluster
The application cluster is a redundant IHS and WebSphere Application Server (WAS)
configuration. This cluster is the standard WS/AS solution for SFA applications. Both
the IFAP and Intranet R2.0 SFA applications utilize the application cluster.

Content Management Cluster

The content management cluster consists of a non-redundant Apache WS integration
with the Interwoven TeamSite COTS product. The Apache WS is utilized for this
cluster because of specific product compatibility issues. Upon resolution of the
compatibility issues TeamSite would be integrated with IHS. A redundant
configuration is not required because this application service is not critical. Recovery is
achieved using alternative resources.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 19

ND Cluster Description

OLAP Cluster
The OLAP cluster consists of a redundant Microsoft IIS and MicroStrategy COTS
product configuration. The non-standard Microsoft IIS solution is specifically required
for the MicroStrategy Active Server Page implementation.

Autonomy Cluster
The Autonomy cluster consists of a replicated DRE configuration. This cluster is an
application service that has a HTTP interface. This interface enables the ND to load
balance the Autonomy resources.

The following diagram illustrates the ND clusters.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E

VIC

Figure 5 – ND Cluster Architecture

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 20

5.2. ITA Touch-Point Scenarios

The following touch-point interfaces are used to show how the service clusters operate to
support the SFA applications.

• Touch-Point # 1 (Portal – SFA Application)

• Touch-Point # 2 (SFA application – Autonomy)

• Touch-Point # 3 (IHS – WAS static HTML)

• Touch-Point # 4 (IHS – WAS Servlet Flow)

• Touch-Point # 5 (IHS – WAS JSP Flow)

• Touch-Point # 6 (IHS – WAS EJB Interaction)

• Touch-Point # 9 (Autonomy – Document Content Publishing)

• Touch-Point # 10 (Autonomy – URL Content Indexing)

• Touch-Point # 11 (Autonomy – High Availability Configuration)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 21

5.2.1. Touch-Point # 1 (Portal – SFA Application)

The Touch-Point #1 interface design describes the basic behavior of the service cluster
architecture using a scenario that traverses the principal service clusters. The scenario traces
information flow through the Schools Portal, SFA applications, and the search engine service.
This interface is for SFA applications that are IHS/WAS based or are separate application
programs.

The following diagram illustrates the scenario.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

1
2

3

4

5

6

7

8

9
10

8

P
E VIC

Figure 6 – Touch Point # 1 – Detail Diagram: Portal SFA Application

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 22

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 19 – Touch Point # 1 – Step-by-Step Description

Step Description

Step 1 A Schools Portal user specifies the HTTP URL of the SFA Schools Portal Main Page (e.g.
www.schoolsportal.sfa.ed.gov\index.html).

Step 2 The users Schools Portal HTTP URL is resolved by the ed.gov DNS to the ND portal cluster virtual IP
address.

Step 3 The Schools Portal HTTP request is routed by ND to one of the two IHS-WAS portal cluster servers.
This IP route decision is based upon the availability and performance of the IHS-WAS servers.

Step 4 The Schools Portal HTTP request is received by the appropriate IHS and either specifies static HTML, a
JSP, or a servlet.

Steps 5 For static HTML, IHS immediately finds the HTML in the HTML directory.

Step 6 IHS returns the HTML to the requesting user for Web Browser rendering.

Step 7
For a JSP/servlet, IHS forwards the JSP/servlet request to the JRun Application Server (AS). With
subsequent JSP/servlet processing, the resulting HTML is returned to the requesting user for Web
Browser rendering.

Step 8

The JSP/servlet request may utilize other application services such as the Viador Portal and/or the
Autonomy Search Engine. Other SFA Applications may be accessed via the user Web Browser by
specifying the SFA application HTTP URL, or indirectly by selecting an HTTP URL within an HTML
page. Either way, the HTTP URL is resolved to the application cluster.

Steps 9 & 10
The application cluster either responds with static HTML or with dynamic HTML produced via
JSP/servlet processing. The SFA application may invoke application services using JSP/servlet
processing.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 23

5.2.2. Touch-Point # 2 (SFA application – Autonomy)

The Touch-Point #2 interface design elaborates the method utilized by SFA applications to
invoke search engine services. This interface is for SFA applications that are HIS/WAS based
or are separate programs.

In Release 1, an SFA application invokes the search engine service using the Autonomy
Knowledge Builder (KB) API. This API provides a C language interface, a Java language
interface, and an HTTP interface. Both the C and Java API produce HTTP equivalent to the
HTTP API.

In Release 2, the search engine KB API may be encapsulated as a JavaBean or a business
object. Encapsulation of the KB API would simplify the invocation and provide a more
functional SFA business capability.

The following example servlet fragment shows the Java invocation of the KB API for a trivial
search engine request. The fragment performs a boolean search of an application DRE. The
Autonomy cluster is specified via a domain name (e.g. autonomy.production.sfa.ed.gov).

package itso.servjsp.servletapi;
import com.autonomy;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HTMLFormHandler extends HttpServlet {

public void init(ServletConfig srvCfg) throws ServletException {
super.init(srvCfg);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
out.println(“<HTML><TITLE>Site Search</TITLE></BODY>”);
out.println(“<H2>Site Search</H2><HR>”);

out.println(“<HR>”);
getSearch(req, out);
out.println(“</BODY></HTML>”);
out.close();

}

public void getSearch (HttpServletRequest req, PrintWriter out)
throws ServletException, IOException {

dreQuery myQuery;
t_dre myDre;
StringBuffer sBuffer;
DreQueryResult myResults;

String sAutonomy;
String sAutonomy_IP;
String aSearch_Argument;

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 24

// Establish access to the Dre
myQuery = new dreQuery ();

// Configuration identifies ‘Domain Name’ of the Autonomy cluster
sAutonomy := getAutonomy(); // e.g. “autonomy.production.sfa.ed.gov”

// Resolve Autonomy cluster ‘Domain Name’ to IP using ed.gov DNS
sAutonomy_IP := getAutonomy_IP(sAutonomy); // e.g. “204.98.12.7”

// Obtain the Autonomy search argument
sSearch_Argument := req.getParameter(“searchargument”);

myDre := myQuery.dreCreateDre (sAutonomy, sAutonomy_IP, 7000, 7001);

try
{

// Query the Dre
myResults = myQuery.dreDoQueryToObject (

myDre,
myQuery.DRE_TEXT_QUERY,
sSearch_Argument,
“”,
“”,
“”,
“”
10,
myQuery.DRE_FULL_RESULTS,
50,
false);

out.println(“<H4>Search Results:</H4>”);
out.println (“(“ + myResults.nResults + “)”);

}
catch (DREException E)
{

out.println (“DRE Error occurred while trying to query DRE: ”
+ toString ());

}
}
}

Figure 7 – KB API SERVLET FRAGMENT

The following diagram illustrates the processing steps involved when an SFA application
invokes the search engine service. An IHS/WAS application is assumed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 25

P
E VIC

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet
N
D

APACHE

IIS Cluster

1

2

3

4

5

6

7

DNS

Figure 8 – Touch Point # 2 – Detail Diagram

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 20 – Touch Point # 2 – Step by Step Description

Step Description

Step 1 An SFA application is invoked via an HTTP request, either from the SFA Portal or from an HTTP URL
specified via a Web Browser.

Step 2
IHS/WAS interprets the HTTP request and invokes an SFA application JSP/servlet. The invoked
application JSP/servlet performs application specific processing and subsequently invokes the search
engine service either directly via the KB API, or indirectly using a JavaBean or Business Object.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 26

Step Description

Step 3
The KB API produces an HTTP request. The search engine service HTTP request URL domain name
specifies the Autonomy cluster (e.g. autonomy.production.sfa.ed.gov). The KB API resolves the
domain name using the DNS,

Step 4 The Autonomy cluster IP address is returned.

Step 5 The HTTP request is issued to the ND Autonomy cluster virtual IP address.

Step6 ND routes the HTTP request to an available Autonomy DRE IP address based on load balancing
criteria.

Step 7 The Autonomy DRE accepts the HTTP request and performs the search. The search result is returned
to the requesting JSP/servlet.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 27

5.2.3. Touch-Point # 3 (IHS – WAS static HTML)

The Web-based SFA applications produce HTML that is rendered by a client Web Browser.
The HTML may be static (pre-generated as part of the SFA application) or may be dynamic
(generated in real-time through SFA application processing). This touch-point scenario
describes the sequence of events for the client Web Browser and IHS – WAS interface with
static HTML.

A client Web Browser initiates an SFA application request by URL. The Web Browser
processes the URL, identifying a Web Server and a specific HTML artifact, and issues an
HTTP request. The HTTP request is processed by the Web Server which gets and returns the
specific HTML artifact to the requesting Web Browser. ND (not illustrated) manages the
Web Browser to Web Server HTTP traffic to provie fault-tolerance.

The following diagram illustrates the basic information flow for this scenario.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 28

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E VIC

SE
Portlet

SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

1

2

3

4

HTTP Request

HTTP Request

HTTP
Response

HTTP Response

Figure 9 – Touch Point # 3 – Detail Diagram: Static HTML Flows Within WebSphere Application Server (WAS)

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 21 – Touch Point # 3 – Step by Step Description

Step Description

Step 1 The client requests information using a Web Browser by specifying a URL. An
HTTP Request is sent to the Web Server.

Step 2 The Web Server passes the HTTP Request for static content.

Step 3 Static content is sent as the HTTP Response (e.g. HTML) back to the Web Server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 29

Step Description

Step 4 The Web Server passes the HTTP Response (e.g. HTML) back to the client Web
Browser.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 30

5.2.4. Touch-Point # 4 (IHS – WAS Servlet Flow)

In this scenario, when the Web Server receives a request for a servlet it redirects the request to
the servlet repository. WebSphere then loads the correct servlet from the servlet repository
(actually a directory on the application server classpath, typically <ServletRoot>\servlet) into
the servlet engine and runs it. The input to the sevlet will be the HTTP request originally sent
to the Web server by the client. The servlet output is usually an HTML output stream. They
may also make calls to Java Beans, Enterprise Java Beans or even other servlets to obtain data.

The following diagram illustrates the information flow for this scenario.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E

VIC SE
Portlet

SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

1

2

8

HTTP Request

Servlet Request

Servlet
HTTP Response

3

BackEnd
Servers

4 5

Data Request Data Response

6
Servlet Call

7

Figure 10 – Touch Point # 4 – Detail Diagram: Servlet Flows Within the WebSphere Application Server (WAS)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 31

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 22 – Touch Point # 4 – Step by Step Description

Step Description

Step 1 The client Web Browser sends an HTTP Request to a Web Server.

Step 2 The Web Server sends a servlet request to the servlet repository.

Step 3 The servlet engine processes the servlet.

Step 4 The servlet engine requests data from a backend server.

Step 5 The backend server sends the requested data.

Step 6 The servlet engine continues to process the servlet.

Step 7 The servlet produces HTML that is returned to the Web Server.

Step 8 The Web Server returns the HTML to the client Web Browser.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 32

5.2.5. Touch-Point # 5 (IHS – WAS JSP Flow)

In this scenario, the HTTP request is processed though the web server (the diagram is a
logical entity only). JSP source files are stored in the web server document hierarchy just like
static HTML files. If the JSP consists only of HTML tags, the servlet produced by the
compiler simply sets the correct fields on the response, opens an output stream to the client
and writes the HTML. If other JSP tags are used then the compiler will create Java code in
the servlet to perform the requested functions as well as writing the static parts of the HTML.
The other tags may include java code fragments or directives to access back-end servers.

The following diagram illustrates the information flow for this scenario.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E VIC

SE
Portlet

SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

1

2

HTTP Request

Servlet Request

HTTP Response

3

BackEnd
ServersData Request Data Response

6

Servlet Call

7

JSP
Compiler

4

5

8

9

10

Figure 11 – Touch Point # 5 – Detail Diagram: JSP Flows Within WebSphere Application Server (WAS)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 33

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 23 – TouchPoint # 5 – Step by Step Description

Step Description

Step 1 The client Web Browser sends an HTTP Request to the Web Server.

Step 2 The Web Server sends the JSP Request to the JSP Repository.

Step 3 The JSP repository sends the JSP to the JSP Compiler.

Step 4 The JSP Compiler produces a servlet and then it sends it to the servlet repository.

Step 5 The Web Server sends a servlet request to the servlet repository and the servlet engine processes the
servlet.

Step 6 A data request is then sent to the backend server.

Step 7 The backend server sends the requested data.

Step 8 The servlet engine continues to process the servlet.

Step 9 The servlet produces HTML that is returned to the Web Server.

Step 10 The Web Server returns the HTML to the client Web Browser.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 34

5.2.6. Touch-Point # 6 (IHS – WAS EJB Interaction)

In this scenario, a servlet requests an EJB service. The Web Server EJS loads the requested
EJB witin an EJB Container. The EJB accesses Backend Servers. The requesting servlet
receives the EJB response and returns appropriate results to the client Web Browser.

The following diagram illustrates the information flow for this scenario.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E VIC

SE
Portlet

SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

1 HTTP Request

HTTP Response

BackEnd
Servers

8

2

3

4

5

6

7

EJB
Request

EJB
Response

Persistent EJB

LoadEJB

Figure 12 – Touch Point # 6 – Detail Diagram: EJB Interaction

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 35

Table 24 – Touch Point # 6 – Step by Step Description

Step Description

Step 1 The client Web Browser evokes a servlet through an HTTP Request..

Step 2 The servlet performs an EJB Request.

Step 3 The EJB Container selects a specific EJB via the Database.

Step 4 The Database provides the selected EJB to the EJB Container.

Step 5 The EJB Container issues a data request to a backend server.

Step 6 the backend server providses the data response to the EJB Container.

Step 7 The EJB Container returns the EJB Response to the servlet.

Step 8 The servlet provides the HTTP Response to the requesting client Web Browser.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 36

5.2.7. Touch-Point # 7 (Autonomy – Document Content Publishing)

OpenDeploy will manage documents to their final production output. Once the document
becomes production, OpenDeploy will deposit the file out to a directory structure on the
production SAN.

The Autonomy Autoindexer process polls the SAN directory for new documents to index. It
then imports the data into an IDX file and sends a command through HTTP to the DRE. The
DRE is given the name of the IDX file to index. The DRE then locates the file and indexes its
contents into the DRE database.

An IDX file will contain information that has been formatted in Autonomy’s import format,
so that it is ready to be indexed into the DRE. A typical IDX file entry will look like this:

#DREREFERENCE http:///www.mysite.com/us/DailyNews/teenviolence0325.html
#DRETITLE Why Do Teens Kill?
#DREFIELD Summary=”Explaning Acts of Brutality by Youngsters Why Do Teens Kill?”
#DRESECTION 0
#DREDATE 925668001
#DREDBNAME Database
#DRESTORECONTENT y
#DRECONTENT
Explaining Acts of Brutality by Youngsters Why Do Teens Kill? Dr. Howard Spivak,
\chirman of AAP Task Force on Violence, comments on kids using violence to
\solve problems Luke Woodman is accused of killing his mother, then going to
\school and shooting nine students in Pearl, Miss.
\[…]
\content here
\[…]
\As a very common theme. In 80% of the cases it has been the case.
#DREENDDOC

The following table lists a point-by-point breakdown of the above IDX file entry.

Table 25 – Touch Point # 7 – Listing of IDX File Entries

Key Value

#DREREFERENCE Original URL for this page.

#DRETITLE Document title.

#DREFIELD Summary Short summary of the document.

#DRESECTION Name User-defined fixed and variable fields.

#DREDAT nnnnnnnnn Document date in epoch seconds.

#DREDBNAME Databasename Name of the DRE database into which this content is to be indexed.

#DRESTORECONTENT (y / n) Flag telling the DRE whether or not it should store this content.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 37

Key Value

#DRECONTENT
#DRECONTENT is followed by a newline character, then the actual content to be indexed
for this record. Content is bounded by a newline character, or by the next #DRE key
encountered.

#DREENDDOC Indicates the end of this record.

The following diagram illustrates the information flow for this scenario.

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E

VIC
SE

Portlet
SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

SAN

1

2
3

4

Figure 13 – Touch Point # 7 – Detail Diagram: Document Publishing Indexing Process Flow

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 38

Table 26 – Touch Point # 7 – Step by Step Description

Step Description

Step 1 OpenDeploy pushes content to production SAN to a location defined as ../autonomyidx.

Step 2 Files from a directory structure are taken by the Autoindexer and an IDX file is created on the SAN.

Step 3 The Autoindexer 1 signals the DRE to read the IDX file on the SAN and indexes the IDX into DRE 1.

Step 4 The Autoindexer 2 signals the DRE to read the IDX file on the SAN and indexes the IDX into DRE 2.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 39

5.2.8. Touch-Point # 8 (Autonomy – URL Content Indexing)

The Autonomy WebSpider uses HTTP request to gather documents from a URL site. Once
the spider process has obtained a document it automatically analyzes the document for links
to other documents. These links are followed conditionally based on the setting specified in
the spider configuration file; further documents may be retrieved. The document retrieved
are then automatically imported into the Autonomy indexing file format and created on the
SAN. OpenDeploy then keeps track of different versions of the index file and recreates the
index file on the SAN. The Autonomy AutoIndexer process then indexes the index file into
the Autonomy DRE database.

The process is duplicated with AutoIndexer 2 indexing the same index file into the
Autonomy DRE2 database.

The following diagram illustrates the information flow for this scenario.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 40

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E

VIC SE
Portlet

SE
API

A
ut

oi
nd

ex
er

A
ut

oi
nd

ex
er

BackEnd
Servers

Autonomy
Spider

1

8

2

3

4

5

6

7

9

Figure 14 – Touch Point # 8 – Detail Diagram: Indexing of URL Content

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 27 – Touch Point # 8 – Step by Step Description

Step Description

Step 1
The Autonomy spider can run multiple jobs. Each job represents a URL that is to be spidered. The
output from the spider is an Autonomy IDX file. The IX file has a .idx extension and is created on a
partition of the SAN in a directory called ../interwovenidx.

Step 2 & 3 OpenDeploy imports the Autonomy index file from the SAN. OpenDeploy will recreate the
Autonomy index file on the SAN in a directory called ../autonomyidx.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 41

Step Description

Step 4 & 5

The Autonomy AutoIndexer process polls the ../autonomyidx directory for Autonomy index files. If
the AutoIndexer finds an Autonomy index file to process it sends a message to the Autonomy DRE
with the name and location of the index file. The DRE then indexes the index file into the DRE
database.

Step 6 & 7 After the DRE indexes the index file successfully the index file is moved to another directory called
../autonomyidx2 which is being polled by the AutoIndexer2 process.

Step 8 When the AutoIndexer2 process finds an index file to process it sends a message to the DRE2 passing
the location and name of the index file.

Step 9 The DRE2 processes the index file by indexing into the DRE2 database.

Step 10 After the DRE indexes the index file successfully, the index file is deleted off the SAN

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 42

5.2.9. Touch-Point # 9 (Autonomy – High Availability Configuration)

The high availability Autonomy configuration consists of two DREs. Both DREs will be the
primary production search engine. The content of both DREs will be duplicated by having
the Autonomy AutoIndexer process index the same information into each of the DREs. The
DREs will be configured as a ND Cluster.

When a user submits a query using the Autonomy search API, the domain name of the ND
will be passed as a property to the Automony Search API. The ND will determine which
Autonomy DRE is active and will load balance the Autonomy API search requests across the
two DREs. If a DRE goes down the ND will submit the search API to the remaining active
DRE.

The output from the Autonomy search API will be an array of results in string format that
needs to be passed by the executing servlet and published out to an HTML table. The HTML
table is displayed to the user.

The following diagram illustrates the information flow for this scenario.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 43

OLAP
Cluster

Content
Mangement
Cluster

Autonomy
Cluster

Portal
Cluster

Application
Cluster

JSP
Servlet
HTML

Autonomy

JRUN AS
SE EJS

JRUN AS
SE EJS

WAS
SE EJS

WAS
SE EJS

I
H
S

I
H
S

I
H
S

I
H
S

DRE

Autonomy

DRE

Web Browser

TeamSite
Server

The Internet N
D

APACHE

IIS Cluster

P
E

VIC
SE

Portlet
SE
API

1

2

3

4

5

Figure 15 – Touch Point # 9 – Detail Diagram: High Availability Solution

The following table lists discrete steps describing the sequence of events and information
flow within the touch-point scenario.

Table 28 – Touch Point # 9 – Step by Step Description

Step Description

Step 1 A search request is invoked by the user, resulting in the SE portlet formatting the user search
argument and search method.

Step 2 The Autonomy KB API formats the user search request into an HTTP request where the host portion
is the ND virtual address of the Autonomy cluster.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 44

Step Description

Step 3 The ND balances the load of the Autonomy cluster and redirects the URL to one of the available
Autonomy DREs.

Step 4 The DRE performs the search request.

Step 5 The DRE returns the search results as an HTML text string.

Step 6 The Viador portlet acts as a Web Browser to the Autonomy DRE server.

5.2.10.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 45

5.2.11. Network Dispatcher Topology

The following diagram provides a basic representation of the ND Topology.

VDC
LAN

EDLAN

Intranet Client
IBM IHS
Servers

Internet Client

The Internet

FW

Backup ND &
Primary AFS

(TBD)

Primary ND &
Backup AFS

(TBD)

SAN

Rest of the
SFA Servers

TBD

TBD

Figure 16 – Network Dispatcher Topology

The ND for the SFA project leverages the capabilities of the Dispatcher and the ISS
components. The ISS monitoring capabilities on the TCP servers (IBM HTTP Servers and
IBM WebSphere Application Servers) provide the Dispatcher with server load information.
In this design, the ISS cooperates with the Dispatcher, but ISS does not make any load
balancing decision. The ISS monitor collects specific server information such as CPU usage,
memory usage and disk activity from the ISS agents running on the individual servers, and
forwards it to the Dispatcher. The Dispatcher uses this load information, along with other
sources of information, to determine which is the least loaded server of the cluster and then
performs load balancing.

The following diagram depicts the ND system for the SFA environment using the Dispatcher
and ISS.

Dispatcher and ISS
Monitor

Internet Client

The Internet

FW

Web Server
Web Server

ISS Agent
ISS Agent

+
Web Server

Web Server

ISS Agent
ISS Agent

+
Web Server

Web Server

ISS Agent
ISS Agent

+

Executor
Executor

Manager
Manager

Advisors
Advisors

ISS

M
O
N
I
T
O
R

ISS

M
O
N
I
T
O
R

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 46

Figure 17 – Network Dispatcher SFA Configuration

Network Dispatch Design Overview

IP Packet Flow

The following diagram is a representation of the IP packet flow in the ND environment.

Network Dispatcher

Internet Client

The Internet

TCP Servers

1 2

3
4

5

Figure 18 – Network Dispatcher IP Packet Flow

IP configuration must be performed on the Dispatcher servers and on the TCP servers (Web
servers). In addition, aliases need to be defined to the cluster address on the network
interface on the Dispatcher servers and the loop back devices on all the cluster’s TCP servers.
The Dispatcher makes several TCP servers appear as one in the TCP/IP environment,
typically for HTTP, FTP, and other protocols on the Internet.

In the ND environment incoming IP packets sent by users to the cluster IP address first arrive
at the Dispatcher machine, not at one of the TCP servers. This is because the Dispatcher’s
network interface, besides having its own unique IP address, has been given an alias to the
cluster address. The TCP servers in the cluster also have an alias to the cluster address, but
this is defined on the loop back interface. The Dispatcher runs at a low level in the server’s
operating system so it can directly intercept all the IP packets. Each time a new connection is
initiated by a client, the Dispatcher selects which TCP server in the cluster should receive the
connection packet. Now the Dispatcher should be able to send that packet to the selected
TCP server. The Dispatcher routes the packet based on the MAC address of the network
adapter on the chosen TCP server.

The original destination MAC address on the IP packet was the one of the network interface
on the Dispatcher machine itself. When the Dispatcher selects the MAC address of the
selected TCP server, it changes the original destination MAC address on the packet to the
selected MAC address. The packet is then encapsulated in the frame and transmitted to the
chosen TCP server. The Dispatcher then sets up a connection table entry to make sure that

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 47

subsequent incoming IP packets for this client continue to be forwarded to the same TCP
server, until the connection is terminated.

When the TCP server receives the packet, the information related to the MAC addresses is
eliminated and the source and destination IP addresses are extracted. The destination IP
address is still the cluster, but the TCP server has its own IP address. However, the TCP
server can accept that packet, since the cluster address is configured as an alias on the TCP
server’s loop back interface. At this point, the TCP server sends a response to the Web client
that originated the request.

Once the TCP server receives all the IP packets of the originating client’s request, it performs
the standard TCP processing that is commonly performed by all TCP servers while
responding to a client. It switches the IP source and destination addresses for the outgoing
packets that form the response to the client. The source address becomes in this case the
cluster address, while the destination address is now the client IP address. This operation has
an important consequence; the balancing function is transparent both to the client and the
clustered servers.

The destination IP address is the client’s IP address, not the Dispatcher’s. For this reason, the
TCP server can route the IP packets through its default router directly to the client, and all the
outgoing packets do not pass back through the Dispatcher. There is no need to even return
using the original physical path and a separate high-bandwidth connection can be used. This
is very important, since in many cases, the volume of the outbound server-to-client traffic is
substantially greater than the inbound traffic. HTML pages and imbedded images are
typically 10 times the size of the client URLs that requested them.

The source IP address in the outgoing packet sent by the TCP server shows as the cluster
address, and not as the TCP server’s IP address. The cluster address was also the destination
IP address in the IP packets sent by the client in its request, so the client is not able to
understand the TCP architecture of the target server. This security feature offered by the
Dispatcher ensures privacy for a site that is composed of multiple TCP servers load-balanced
by a Dispatcher server.

The client and servers must be part of the same Intranet. In this case, the network-monitoring
tool would show the MAC address of the TCP server that actually served the request. The
MAC address shown in the packet is that of the router closest to the client.

The Dispatcher does not participate in bi-directional communications with the client but
simply forwards the incoming packets unchanged, its presence is transparent to both client
and server. The real TCP/IP connection is between the client and the clustered server, and
the Dispatcher soon disappears from the scene after forwarding the incoming packets. The
only requirement for the TCP server is that its loop-back device be set or aliased to the cluster
address. In this way, the server is capable of responding to a request that was addressed to
the cluster address.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 48

ND Servers

The ND servers consist of IBM Sun Microsystems Enterprise servers. These are the same
servers used for the AFS. The primary server used for the AFS is the backup server for ND
and the backup server used for AFS is the primary for ND. The ND servers will be classified
as Database Server, File Server, System Control Machine, and Binary Distribution Machine.
The responsibilities of the ND primary server include:

• Executor – This function supports port-based routing.

• Manager – This function sets weights used by the Executor based on the feedback from
the ISS monitors and the Executor.

• Advisor – This function sends requests to TCP servers to measure actual client response
time for a particular protocol and feeds such information to the Manager.

• ISS Monitor – This function provides the feedback to the Manager through the ISS agents.

The responsibilities of the ND backup server include the same functionality as the primary
server. However, the ND backup server will only be used upon the failure of the primary ND
server.

High Availability Design

ND is designed for high availability. A standby Dispatcher server, the backup server,
remains ready at all times to take over load balancing should the primary Dispatcher fail. The
high-availability configuration detects and recovers from network and server failures. The
Dispatcher is able to determine that a server or a network is down. In case of failure, clients
lose only the current connections, but they can immediately establish a new connection to the
remaining servers with no problems.

The high-availability environment involves the two Dispatcher servers, the primary and
backup, with connectivity to the same clients, and to the same cluster of servers, as well as
connectivity between the Dispatchers.

The primary machine works normally as a Dispatcher, and is in the active state while it is
load balancing the TCP servers of its clusters. The backup machine configured in a very
similar way to the primary machine, stays in standby mode unless the primary fails. The two
machines are synchronized, and only the primary machine routes packets, while the backup
machine is continually updated.

The two machines establish communication to monitor the status of each other, referred to as
a heartbeat, using a specific port. If the primary machine fails, the backup machine detects
this failure, switches to active state, and begins to take over the routing of packets. When the
primary machine is operational again, but in standby state, depending on the configuration,
it either automatically becomes the active machine, or stays in standby mode. In standby
mode, a manual intervention is required to make it active again.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 49

ND Clients

The ND system, in the SFA environment, has the TCP servers as its clients. These clients are
the IBM IHS Servers.

Networking and Interfaces

The current design of the ND servers for ITA relies on the SFA VDC LAN environment for
connectivity between:

• The ND servers and the IBM IHS servers.

• The ND servers and the Web browser clients through the firewall.

• The ND system in the SFA environment for the initial release will not operate over the
WAN.

Local Area Network (LAN)

The network topology required for the ND system is Ethernet. TCP and UDP are the
communications protocol used between the clients and the servers. The LAN connection will
support the following:

• Connectivity to the IBM IHS server

• Connectivity to the Internet

• Connectivity to the Intranet

Cluster Address and Non-forwarding Address

Two ND Clusters will be defined for the SFA project using the same network interface card.
One cluster for the Internet access and a cluster for the Intranet access. Therefore, two aliases
will be configured to match the two clusters. The Dispatcher server will require four IP
addresses as described below.

Two primary IP addresses are required for the primary and backup Dispatcher servers. This
type of IP address is also known as the non-forwarding address, is the IP address of the
hostname. The cluster address is the IP address that will be used by clients to access the entire
site. The Dispatcher’ will be dedicated to load balancing requests that are sent to this address.
A hostname can be associated to this cluster address.

A cluster IP address is required for the Internet network. This is a unique IP address by
which client requests access the cluster. It is a virtual address that is valid only locally.
Therefore, no other server on the network should have the same IP address as the cluster
address. The same IP address, in the production environment will be used for the primary
and backup clusters.

A cluster IP address for the Intranet. This also is a unique IP address. The same IP address, in
the production environment, will be used for the primary and backup clusters.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 50

Wide Area Network (WAN)

The WAN is not required for the initial release.

TCP and UDP Ports

The ND system can load balance any TCP or stateless UDP application. However, these ports
need to be defined for each protocol for the ND.

The following table lists the ports required for the initial release.

Table 29 – Protocol Definition for ND System Load Balancing

Protocol Port

FTP 20

FTP Control Port 21

SSL 443

Advisor protocols and ports

In order to feed the Manager with information about the status of the IBM IHS Servers, the
Advisor must be configured and started. The following is a table of available Advisors along
with their respective protocols and ports.

Table 30 – Advisor Protocols and Ports

Advisor Name Protocol Port

ftp FTP 21

Telnet Telnet 23

Smtp SMTP 25

http HTTP 80

Pop3 POP3 110

nntp NNTP 119

SSL SSL 443

Workload Manager Private 10,007

WTE HTTP 80

PING ping 0

5.3. Database Server

The database component provides a persistent data storage and retrieval service organized as
an Operational Data Store (ODS). The preferred access method for the ODS is JDBC for Java
applications; and Open Database Connectivity (ODBC) for non-Java applications.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 51

Native Oracle drivers are also supported for specific application or other COTS products.
The recommended access approach is to consolidate application accesses into a few calls
using Stored Procedure Calls.

The Database component will use ORACLE 8i and will be installed in a redundant Hewlett
Packard (HP) N-class environment. Database replication is utilized to achieve high-
availability.

The information managed by the database server component is either application or COTS
product specific. The databases associated with applications are not addressed as an integral
part of the IA. The databases associated with the IA COTS products are specified and
discussed with each product.

5.4. Component Integration

The search engine can be invoked by the Portal component. The following diagram
illustrates how the search engine interacts with the Portal component.

5.4.1. Viador Autonomy Portlet Integration

User Workstation

Viador
Portal

IHS JRUN
http

Portlet &
Datafeed

APIs
Autonomy Spidered

Websites

Stored Agent File (.agt)

DRE DataStore

Viador
Repository

Access Restricted by
Channel Publishing

Two Roles:
1) Search Engine Open to All Users
2) Channel Definition Editor Open to
Users with Channel Creation Privilege

Message
Board

Figure 19 – Viador Autonomy Portlet Integratoin

The Knowledge Management component integration with the Portal component has been
identified in the following parts:

Search/Advanced Search

Search engine components will use the Portal component Data Feed API using search field
and advanced search functions that are abstracted by the Portal component. The search field

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 52

will allow search users to enter natural language information and exploit the search engine’s
searching rules as well as other advanced search capabilities.

Categories/Communities

Integration of search engine agent technology will be used to categorize information and to
auto-feed channels and/or folders in the portal. These agents will be registered as object
types (links within the portal) that define and populate channel information; in particular this
would be a channel stated as relevant information. These links would point to the search
engine agent and execute them upon request.

Collaboration

The search engine has the capability to collaborate this agent technology by sharing with
other users similar types of research. The Portal component Data Feed API filters and
displays, using embedded security, the files to which each user has authorization.
Collaboration of the search engine agents will need to be defined as a separate portlet within
the portal itself, and needs to display the other users that are performing common searches.

5.4.2. Interfaces With Other Applications

Search Engine Application Server Integration

The Autonomy Search Engine will work with any Web Server that supports the following:

• JSP

• CGI Scripts

• POP3

The configuration of the search engine and a Web server is straight forward since the search
engine only uses the Web server to present its user interface. The configuration involves
locating the Web server HTML root directory and copying all of the search engine HTML
files. Another parameter is locating the Web server CGI script directory and copying all of
the search engine's CGI scripts.

5.4.3. Search Engine Portal Integration

The integration of the search engine and the portal requires the Java Toolkit supplied by the
search engine and using the Data Feed API supplied by the portal.

The search function allows users to enter natural language information to exploit the search
engine's search rules as well use the search engine's advanced searching capabilities.

The following diagram illustrates the search engine portlet.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 53

Intranet

Spidered
Web Sites

Viador E Portal
Framework

Viador Portal Builder
and Data Feed API

Autonomy

Viaodr Applications

Other 3rd Party
Application Portlets

Autonomy Channels
and Agents

Autonomy DRE's
Autonomy will create DRE from spiders which
will point to the actual documents and objects

Autonomy will spider web sites and create
search indexes for the Viador E Portal

Viador Portal Customization API can customize look and feel by user, groups, and roles

Viador Portal will be with
AGT object type defined

Figure 20 – Search Engine Portlet

5.4.4. Search Engine with the Content Management Tool

The integration of InterWoven’s Content Management and Autonomy’s Search Engine is
accomplished with out of the box capabilities. Autonomy will not index any InterWoven
content until the content has reached its final output. The content will be copied to a shared
directory where the Autonomy AutoIndexer process will monitor and index any new content
that is published to the shared directory.

5.4.5. Message Board

The Autonomy Search Engine has the ability to provide white-board messaging. The
Autonomy Message Board will be defined as a separate Viador portlet and will be available
to users through the security of role assignments and applications rights.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 54

6 Performance Considerations

The following sections discuses the specific IA design for performance considerations. The
performance of the IA is based on the performance of the architecture components and the
VDC environment that supports the IA servers. The IA design replicates certain components
to insure that adequate capacity is available.

6.1. Web Browser

The individual user provides the Web Browser component and adequate performance is
assumed. Specific application requirements may levy performance or capacity requirements
on the client.

6.2. Firewall

The Firewall component is provided by the VDC and adequate performance is assumed.
The anticipated client connection request volume is expected to be within the capacity of
already installed Firewall components.

6.3. Load Balancing

The ND Manager decides which is the least-loaded server on a particular port in the cluster
by looking at the weight of each server. The Manager will periodically update the weight of
each of the server machines, basing its decision on four parameters or policies:

• The number of active connections on each TCP server

• The number of new connections for each TCP server

• Input from TCP server Advisors

• Information from system monitoring tools, such as ISS

Using the method called proportions of importance performs setting the servers’ weights in
the load-balancing process. Each of the above factors is attributed a number, from 0 to 100,
that acts as a percentage. 0 means that the policy is not used while 100 means that only that
factor will be used. It is necessary that those proportions add up to 100. The default settings
at the startup appears as 50 50 0 0.

6.3.1. Guidelines on Proportions of Importance Settings

Although there are generally no fixed rules on how to set the proportion value, it is still
possible to provide some useful guidelines.

The first two proportions are related to active and new connections respectively. Typically in
an out-of-the-box configuration, this is all you will be able to use. That is why the default
proportions at startup of ND appear as 50 50 0 0.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 55

The load on a classical Web server depends mainly on the number of connections, both active
and new. If the client connections to the services provided by the TCP server machines are
quick (such as small Web pages served using the HTTP GET method), then the number of
active connections will be expected to be fairly low. On the contrary, if the client connections
are slower (such as database queries), then the number of active connections will be higher.

If the Manager started, the value for the Advisor proportion may need to be non-zero. The
standard Advisors shipped with ND execute a trivial transaction on each TCP server.
Experience shows that it is not a good idea to set the Advisor proportion to a high value. We
recommend 49 49 2 0 for this setup.

If the ISS daemon is installed on the servers, the ISS proportion needs to be added.

6.4. Web Server

Based on application requirements.

6.5. Application Server

Based on application requirements.

6.6. Component Broker

Based on application requirements.

6.7. Content Management

6.7.1. Performance

TeamSite does not have any kernel tuning parameters that need to be configured. The only
tuning would be what is required of the Web Server component. The following sections
describe the essential TeamSite performance configuration settings.

Cache Size

To set the TeamSite cache size, edit the cachesize line in the [iwserver] section of iw.cfg. If a
comment symbol (#) is present at the beginning of this line, remove it. If this line does not
appear in the iw.cfg file, add it as shown below. The initial cache size setting should be
approximately three times the number of files and directories on the largest branch. For
example, if the largest branch contains 15,000 files and directories, you should set cache size
to 45000 as shown below.

The minimum cache size is 1000; maximum is 500000 (five hundred thousand). Each cache
line takes a maximum of 1KB of physical memory. Recommended physical memory is cache
size times 1KB plus an additional 25% as a safety margin. In the example shown below,

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 56

physical memory would be (45,000 * 1KB) + 11MB = 56MB. If there is a great deal of memory
swapping, either reduce the cache size or install more memory.

The TeamSite server must be restarted for these changes to take effect.

cachesize=45000

RPC Threadcount

The RPC threadcount setting determines how many simultaneous requests TeamSite can
handle from users via the GUI or command-line tools. These requests are very short-lived, so
that threads are quickly freed for other users. If all threads are currently being used,
TeamSite starts to serialize requests. This setting should not be altered.

rpc_threadcount=64

File System Threadcount

The file system threadcount should be set to approximately the number of CPUs on the
TeamSite server. This setting should not be set higher than 2. To change the file system
threadcount, edit the fs_threadcount line in the [iwserver] section of iw.cfg. If a comment
symbol (#) is present at the beginning of this line, remove it. If this line does not appear in
your iw.cfg file, add it as shown below.

The TeamSite server must be restarted for these changes to take effect.

fs_threadcount=1

Filesystem Active Area Cache

The file system active area cache should be set to approximately the number of users who are
expected to be using TeamSite concurrently. This is the number of users who are using
TeamSite at one time, not the total number of TeamSite users. If this value is too large, it will
significantly impact memory usage.

To set the file system active area cache, edit the fs_active_area_cache line in the [iwserver]
section of iw.cfg. If a comment symbol (#) is present at the beginning of this line, remove it.
If this line does not appear in your iw.cfg file, add it as follows:

The TeamSite server must be restarted for these changes to take effect.

fs_active_area_cache=8

6.8. Portal

The Portal component provides the ability to support thousands of concurrent portal sessions
while delivering consistent response time to incoming requests from portal users. To do so
requires at least 300 MB of physical disk space and 256 MB of memory available on the server

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 57

machine in order to satisfy the needs of 10 user’s licenses. An additional 2 to 4 MB of
memory per each concurrent user license is also recommended.

6.9. Knowledge Management

The search engine is CPU intensive and operates from a central location, thereby increasing
the demands of the network. The size of the request and through-put could possibly place a
strain on the network on which it resides. This also impacts both the insertion and retrieval
of information.

One solution to improving performance is creating additional instances of the DRE. As a
rule, adding more processors and memory will increase the search engine's system
performance. In addition, creating multiple instances of the DRE on one physical machine
can also improve performance.

A reasonable document threshold is 1.5 million documents to each DRE instance.

6.9.1. Operational Monitoring

The Autonomy administrator tool is used to monitor both query responses and load
indexing. The operational monitoring tool reads the search engine log files that are provided
with the product.

The DRE process can be monitored by issuing an HTTP command from any web browser.
The URL is http://dreipaddress:drequeryportnumber/qmethod=v . This command will
provide information such as the number of documents resident in a DRE, the query response
times, a listing of all query and indexing requests, information about every HTML file that
the spider job touched, whether an HTML file was indexed into the DRE, and if not, an
(English) explanation why the HTML file was not indexed.

An alternative path to finding all DRE activity is to look in the DRE working directory, at the
file called 'queryh.log'.

6.10. Directory Server

The Directory Server component is provided by the VDC and adequate performance is
assumed. Specific application requirements may levy specific performance or capacity
requirements on the VDC implementation.

6.11. File Storage

6.11.1. AFS Client Tuning

AFS offers a number of parameters for tuning client performance and behavior. The
following parameters affect performance:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 58

• The Cache Size determines how much AFS data can be cached locally on the client. The
obvious consideration in determining the cache size is the amount of available disk space
on the client, but the cache size should not be made extraordinarily large. The number of
users on the machine and the type of data being accessed should be considered when
determining cache size. A Windows NT workstation being used for office applications
would want to have a cache no larger than 30-60 MB.

• The Chunk Size determines the size of the data chunks sent from the File Server. A small
chunk size requires more memory usage by the client and may lead to performance
problems, but a larger chunk size may waste cache space if a lot of the cached files are
smaller than the chunk size setting. Typically this setting is adjusted upward for both
large data files and fast network technology.

• The Status Cache setting determines the number of cached files about which the Cache
Manager retains status information. Adjust this setting upward if the client is caching
many small files as opposed to fewer large files.

• The Probe Interval sets how often the client contacts the File Servers to make sure they
are still responding.

• The Background Threads handle background tasks for the Cache Manager.

• The Service Threads handle all initial requests for data; applications could possibly be
delayed while waiting for a service thread to complete.

With Solaris, tuning AFS client performance can either be performed via the AFS Client
Configuration Control Panel or the Command Prompt. The first consideration is the AFS
client cache itself, as it can be used as either a disk-based cache or, if sufficient Random-access
Memory (RAM) is available, as a memory-based cache. Also the AFS client cache on UNIX
systems can typically be set larger than what Windows NT can accommodate, and for cases
of large file and data set access, cache sizes of 500MB to 1 GB or more are possible. Moreover,
the Cache Manager process - afsd - accepts a number of different arguments that influence its
behavior and performance. Some of these include:

• Memcache initializes a memory cache rather than a disk cache.

• Blocks is the number of 1024-byte blocks in the cache and so overrides the cache size
specified in the /usr/vice/etc/cache info file.

• Files sets the number of V-files created in the cache directory, which overrides the default
that is calculated automatically by afsd.

Upon startup afsd will set the number of V-files used in the cache depending on whether a
memory cache or disk cache is used. If a memory cache is used the number of chunks (V-
files) will simply be the cache size divided by the chunk size. For a disk cache the number of
chunks will be the largest of the following:

• 100

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 59

• (cachesize / chunksize)x 1.5

• cachesize / 10,240

• Stat is the number of entries stored in memory for recording status information about
files in the cache; the default is 300.

• Daemons sets the number of background daemons to run on the client. These daemons
improve performance by doing pre-fetching and background writing of saved data. The
default value is 2, which is adequate for a machine with approximately 5 concurrent
users. Values greater than 6 are not generally more effective than 6.

• Chunksize sets the size of chunks (or V-files) in the client cache, expressed as a power of
2; the default is 16 for disk cache (2 16 bytes = 64 KB) and 13 for RAM cache (2 13 bytes =
8 KB). This will also be the size of the data chunks that the client requests from File
Servers.

• Dcache sets the number of dcache entries in memory, which are used to store information
about cache chunks. For a disk cache this overrides the default, which is half the number
of V-files; its use is not recommended for memory caches

• Volumes is the number of memory structures allocated for storing volume location
information; the default is 50.

• Biods sets the number of virtual memory (VM) daemons dedicated to performing I/O
operations on machines running AIX with VM integration.

Changing or setting any one of these parameters on an AFS client is liable to affect
performance, so care must be taken to ensure proper performance monitoring and
evaluation.

Setting the Client Cache Size

AFS Client Tuning AFS offers a number of parameters for tuning client performance and
behavior such as server preferences. The size of the AFS client cache is probably the single
most important factor in determining the performance of AFS. Factors that determine the
appropriate cache size for a given client include:

• The number of users working on the machine

• The size of the files with which they usually work

• The number of processes that usually run on the machine

The higher the demand from these factors, the larger the cache needs to be to maintain good
performance. Disk caches smaller than 10 MB do not generally perform well. Machines
serving multiple users usually perform better with a cache of at least 60 to 70 MB. The point
at which enlarging the cache further does not really improve performance depends on the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 60

factors mentioned above and is difficult to predict. An AFS client cache can initially be set at
installation and then later adjusted dynamically to near the maximum partition size.

6.12. Database Server

The Database Server component is provided by the VDC and adequate performance is
assumed. Specific application requirements may levy specific performance or capacity
requirements on the VDC implementation.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 61

7 Configuration Standards/Requirements

7.1. Web Browser

The Web Browser component is configured to disable dynamic HTML.

7.2. Firewall

The Firewall component is configured by the VDC.

7.3. Load Balancing

The system administrator must have root access in order to perform any administrative tasks
on the Network Dispatcher. The server component is implemented as a Java class, running
through the JVM java executable file. The first step in configuring the Dispatcher is to make
connection to a host where the Dispatcher is running. The Executor is the Dispatcher
component that routes requests to the TCP and UDP servers. It monitors the number of new,
active, and finished connections and performs garbage collection of complete or reset
connections.

The administrator redefines the non-forwarding IP address or the host name of the Load
Balancing component. The Configuration setting section lists a set of parameters for the
Executor that can be changed. Some of them have immediate meaning, such as:

• Maximum number of clusters (default is 100)

• Default maximum ports per cluster (default is 8)

• Default maximum servers per port (default is 32)

For a stable running configuration, the administrator may leave the parameter values that
appear by default in the Configuration settings section of the Executor Status. The non-
forwarding address is set in place of IP address.

In order for the Dispatcher to route packets, each cluster address must have an alias to a
network interface card on the Dispatcher server. There are different methods for creating an
alias on the Dispatcher server’s network interface card to the cluster address. Only one
method needs to be used by the administrator to accomplish the task:

• Using system commands ifconfig or ndconfig

• Using configuration scripts to create this alias

• Using the ND GUI or the command line ndcontrol

The Dispatcher can load balance any TCP or stateless UDP application. The administrator
may want to define as many ports as the protocols for the Dispatcher server to communicate
through.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 62

The system administrator needs to define the TCP servers that need to be included in the
cluster for the configured ports.

The main load balancing function is the Manager. The Manager is the function that collects
the information from the Advisors about the servers’ conditions. Based on this information, it
then dynamically adjusts the weights of the single server to reconfigure load distribution
during run time.

The Advisor monitor each server defined on the assigned port, and forwards the information
about the server’s response time and availability to the Manager.

Configuring the TCP Servers (Web Servers)

Before the Dispatcher starts to forward TCP/IP connection requests to the TCP servers, it is
necessary to set up the TCP server machines. On each server in the cluster, the administrator
must add an alias to the cluster address on the loop back interface. This is the only
configuration necessary in the TCP servers in order for to be load balanced by the Dispatcher.

The loop back IP address is usually 127.0.0.1 and is never forwarded as a destination on the
network media. The Dispatcher does not change the destination IP address in the TCP/IP
packet before forwarding the packet to a TCP server machine. By setting or aliasing the loop
back device to the cluster address, the TCP servers will accept packets that were addressed to
the cluster address. Before going on with the TCP server’s configuration, the administrator
must understand the flow of the incoming and outgoing IP packets.

Cluster Addresses and Network Interfaces

It is possible to configure the Dispatcher to manage more than one cluster, whether the
Dispatcher server has one or more network interface card. Following are some scenarios:

• If the Dispatcher server has only one network interface adapter, several aliases can be
configured to match the number of clusters defined on the same network interface card.

• If the Dispatcher server has two network interface cards, the administrator can manage
two clusters, one on each interface card. Each cluster address must have an alias on the
corresponding network interface card.

Managing TCP Ports Used by the Dispatcher

The Dispatcher uses three TCP ports for its communications:

• Port 10099 - This port is used for receiving commands from the ndcontrol program

• Port 10005 - This port is used to receive information from an SDA agent

• Port 10004 - This port is used to receive metric response from ISS

On occasions, the administrator may need to change the TCP port:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 63

• If another application is already using port 10099 or port 10005 for its communication,
then the ndserver script needs to be modified to use different ports. The script is located
by default under the /bin directory.

• To change the port used for receiving ndcontrol command, change the ND_RMIPORT
variable to a new value.

• To change the port used to communicate to an SDA agent, the ND_AFFINITY_PORT
variable to the new port number needs to be changed.

• To change the port used to receive metric reports from ISS, the metric_port option must
be used when starting the manager. When a metric_port is specified,, a log_file needs also
to be specified. In addition, to inform ISS of a change in the metric port number, when the
Dispatcher Observer is defined in the ISS configuration file, the new port must also be
defined.

7.3.1. Configuring and Managing ISS

The system administrator must have root access in order to perform any administrative tasks
on the ISS. These tasks include:

• Starting the ISS Daemon – The ISS will operate in this design as a monitor agent.

• Connecting to a host. The administrator must configure the ISS to make a connection to a
host where the ISS daemon is running.

• Adding nodes. The administrator must add nodes to the configuration. The
administrator must configure the primary Dispatcher server to be the primary ISS
monitor and the TCP servers to be the ISS agents. The administrator must also configure
the backup Dispatcher server as the backup ND server.

• Defining resource types. The administrator must add resources such as CPU resources to
the configuration.

• Defining Services. The service name must be added to the configuration. In our design,
the Service DNS name is not needed since we are using ISS as a monitor to update the
Dispatcher.

• Add Node Interface to Service. You add the servers to the defined service.

• Defining Observers. The administrator must select the type of Observer to add. For SFA,
it is the Dispatcher.

The administrator can dynamically reconfigure ISS by using the isscontrol command or the
GUI.

7.4. Web Server

Based on application requirements.

7.5. Application Server

Based on application requirements.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 64

7.6. Component Broker

Based on application requirements.

7.7. Content Management

The Web Server component is required to access the TeamSite GUI, as well as any Templates
that are written for the SFA. The aliases that are needed in order to log into the TeamSite
product are specified at product installation.

The DataDeploy component requires the ODS instance server name, database name,
connection port, and user name and password to populate tables in the ODS.

7.7.1. TeamSite Server Configuration Requirements

The following table identifies the recommended physical cache memory for the TeamSite
server.

Table 31 – TeamSite Server Cache

Files Per Branch
Total Users

0 to 25,000 25,000 to 75,000 75,000 +

0 to 25
• 1 CPU

• 256 MB Memory

• 1 CPU

• 512 MB Memory

• 2 CPUs

• 1 GB Memory

25 to 50
• 2 CPUs

• 256 MB Memory

• 2 CPUs

• 512 MB Memory

• 2 CPUs

• 1 GB Memory

50 to 100
• 2 CPUs

• 256 MB Memory

• 2 CPUs

• 512 MB Memory

• 4 CPUs

• 1 GB Memory

100 to 250
• 4 CPUs

• 512 MB Memory

• 4 CPUs

• 1 GB Memory

• 6 CPUs

• 2 GB Memory

250 +
• 8 CPUs

• 1 GB Memory

• 8 CPUs

• 1 GB Memory

• 8 CPU

• 2 GB Memory

Recommended physical memory for the cache is the cache size setting times 1KB plus an
additional 25% as a safety margin. For example, if the cache size setting is 45000, physical
memory needed just for the cache would be (45,000 * 1KB) + 11MB = 56MB. If excessive
memory swapping is observed, either reduce the cache size setting in iw.cfg or install more
memory.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 65

Global Report Center Requirements

The TeamSite Global Report Center requires approximately 5 MB of physical memory. The
OpenDeploy Global Report Center has the same requirement. Therefore, approximately 10
MB of physical memory is required for the Global Report Center.

Disk Space Requirements

All servers are configured to have sufficient disk capacity for 760 MB of TeamSite program
files (/iw-home) and five to ten times the total amount required for the Website content files
to consume (/iw-store). This amount of disk space is required in order to store TeamSite
metadata and multiple versions of your Website files.

Inode requirements

TeamSite requires a large number of inodes for efficient performance. To estimate how many
inodes your server will require, use the following formula:

inodes = (# branches)(# average files in staging area
per branch)(# average historical versions/file)

(3 + 3(% of files having extended
attributes)/100))(safety-factor)

For example, if the TeamSite server has three branches, with 20,000 files in the staging area of
each branch, (on average), ten versions of each file in its history list (on average), seven
percent of files have extended attributes, and a 1.5x safety factor:

inodes = 3 * 20,000 * 10 * (3 + 3*.07)* 1.5

= 600,000 * 4.8

= 2.9M inodes

Global Report Center Requirements

The TeamSite Global Report Center (installation is optional) requires an additional 25 MB of
disk space, plus 10-50 MB for data storage.

7.7.2. Scalability

Scalability is handled through increasing the capabilities of the server. If multiple servers are
needed due to excessive delays in service then two installations of TeamSite would be
needed. This would work well if there are multiple branches to split off onto the separate
installations. The best example would be to split up the Intranet and Internet branches of the
SFA Website.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 66

7.7.3. Reliability

TeamSite is not a critical production server and does not require high availability. The
content is archived and is available for recovery.

7.8. Portal

The Portal component requires the following components:

• IBM HTTP Server

• Java Development Kit (JDK) 1.1.8_09a Production Release to host the Viador Information
Center

• SQLNet - Client/server middleware to connect to the database repository

• An Oracle 8i database instance with at least 90MB of disk space

The Portal must be installed in a directory named infospc immediately below the Web
server’s http document root directory. The install program will suggest an installation
location based on the information entered about the Web server. Install the Viador Portal
Suite at the document root of the Web server.

Information regarding the owner of the user-repository tables and related database
connection needs to be registered with the Viador Information Center (VIC). In order to store
the information regarding user-repository tables with the Viador Portal Suite, the SFA system
administrator needs to run the SetRepLogin shell script that is installed within the util
subdirectory, under the infospc directory, found inside the document root of your Web
server.

The Viador Information Center server requires a connection to a database to be established in
order to start up. The Viador Information Center attempts 5 retries at 30-second intervals to
establish a connection to the server. If the database starts up more than 300 seconds after
Viador Information Center attempts to start up, a timeout situation may occur.

SFA users will need to run a Java enabled browser in order to use Viador’s E-Portal suite.
The certified browsers for each platform are listed in the following table.

Table 32 – Client Compatibility

Client Platform Client Browser

Netscape 4.51, 4.61, 4.72, 4.08
Windows NT 4.0

Internet Explorer 4.01 (4.72.3110.8) **, 5.0

Netscape 4.51, 4.61, 4.72, 4.08
Windows 95

Internet Explorer 4.01 (4.72.3110.8) **, 5.0

Netscape 4.51, 4.61, 4.72, 4.08
Windows 98

Internet Explorer 4.01 (4.72.3110.8) **, 5.0

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 67

Client Platform Client Browser

Windows 2000 Internet Explorer 5.0

7.8.1. Security

The security services provided by the portal framework include Authorization and
Authentication.

Use authorization is organized by individuals, roles or groups, and is used to control the
level of granular access an individual has to a portal object. The individual may be
granted read-only access, or may be granted the ability to publish, modify or delete a portal
object.

Authentication is the process of uniquely identifying a specific individual. The portal
framework authentication services are also used to define and enforce corporate security
policies, such as password aging.

7.9. Knowledge Management

7.9.1. DRE Engine Configuration

Once the Autonomy Server has been installed there are two new directories. These include:

• The Installation Directory

• A directory with the Autonomy Server name containing the HTML pages for the
Autonomy Server. This directory is found under the Web root directory

As well as these two directories there are two new files in the Scripts Directory which contain
the CGI Scripts. The Server.CFG file and the KnowServer.EXE (Server being the name chosen
for the installation).

The Installation Directory contains the DRE used for querying and indexing. This constitutes
the back end of the Autonomy Server. The other two directories (Scripts Directory and the
Directory with the Autonomy Server name) contain all the files for the front end of the
Autonomy Server.

DRE.ini naming conventions

The DRE.ini file has the option to be renamed but there are various rules that apply. The
DRE.ini file can be called WhateveryoulikeDRE.cfg however:

• If the system finds DRE.INI in its directory, it will connect to that engine

• If not, then if the GUIAdmin's name is MyServerDreAdmin.exe then it will look for
MyServerDre.cfg and connect to it.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 68

The DRE name must be synonymous with the INI file, e.g. WhateveryoulikeDRE.inc implies
WhateveryoulikeDRE.cfg , and the GUI is WhateveryoulikeADMIN.exe. Basically, the GUI takes
off the "Admin" at the end of its name, and appends ".cfg" to find the right file.

Configuring The Dynamic Reasoning Engine

This section includes details of the configuration of the Dynamic Reasoning Engine (DRE)
and the use of the utilities supplied with the DRE which are provided for maintaining and
servicing the system.

The DRE uses a single configuration file DRE.ini. This file has a similar format to a standard
Windows INI file, with a number of sections defined with square brackets and each section
containing a number of key=value pairs. Please be aware that where any key=value
parameter that calls a value from else where, the value setting must be treated as case
sensitive.

The several sections in the configuration file each govern different aspects of the operation of
the DRE and are arranged in the following format:

• [MySecuritySection]

• [License]

• [Server]

• [Schedule]

• [Default]

• [Fields]

• [Cache]

• [IndexSummary]

• [IndexCache]

• [dbname]

For details on the individual sections, please consult Appendix A.

AutoIndexer

This section describes how to configure the Automatic Indexing process. Automatic
Indexing is a continually running process, which performs operations from a queue file or
directory(ies). You will need to specify the name of the queue file(s)/directory(ies) in the
autoindexer.cfg file (detailed in the following subsection).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 69

A Queue File contains a list of filenames with a full or relative path. Every time a new name
or list of new names is appended to the list, they automatically get processed. In the case of
the directory(ies), the Automatic Indexing process looks at any new files that appear in the
directory together with any files that have been replaced or updated, and automatically
processes them. In addition autoindexer can handle a few additional data formats, such as
HTML, Word documents, PDF files etc.

Once the DRE is running, the Autoindexer program may be started as a service allowing new
data content to be added dynamically. Communication between Autoindexer and the DRE
is fully automated and, once invoked, the process may be left running all the time.

To stop and restart the process, the <AppName>.dirstat file together with the
<QueueFile>.pos in the autoindexer Directory is deleted. The <AppName>.dirstat file keeps
a list of all the files that have been processed while the <QueueFile>.pos records the current
position in the queue of files to be processed. To reprocess the last file dealt with, replace the
contents of the <AppName>.dirstat file with the contents of the <AppName>.dirstat.bak file.
Also replace the contents of the <QueueFile>.pos file with the contents of the
<QueueFile>.pos.bak file. The <AppName>.dirstat.bak file keeps a copy of the
<AppName>.dirstat file before the last file was processed while the <QueueFile>.pos.bak file
keeps a copy of the <QueueFile>.pos file before the last file was processed.

Also located in the Installation Directory, is the .log file. This file records all the actions
performed by the Autoindexer.

The AutoIndexer will automatically attempt to import and index any NEW files that
appear in the directory(ies). You should be aware of any applications that might create
temporary files in the directory. For example, MS Word create temporary files in the
current directory. If this is done in the directory polled by AutoIndexer, they will get
indexed.

The Automatic Indexing process uses a single configuration file autoindexer.cfg, which is
located in the Autoindexer directory with the name identical to the Autoindexer Executable
file. This file has a similar format to a standard windows INI file, with a number of sections
defined with square brackets and each section containing a number of key=value pairs. The
three sections; [Configuration], [Default], [myjob], in the configuration file each govern
different aspects of the operation of the DRE and are arranged in the following format.

• [Configuration]

• [Default]

• [myjob]

In the above, [myjob] represents the section containing details on a particular job named
myjob.

Please be aware that any key=value parameter that calls a value from elsewhere, the value
setting MUST be treated as case sensitive.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 70

The Autoindexer is used for indexing idx files, importing to an idx file and indexing,
importing, indexing and deleting and just deleting. If you want to do more than one action,
then you need to create multiple jobs within your configuration file. You can also perform
these actions within more than one DRE at a time, see the DRE host settings in the [Default]
part of the autoindexer.cfg.

For additional details on the individual sections, please see Appendix B.

Server Sizing and Scaling

The DRE can scale by creating multiple instances of the DRE. These additional DRE’s can
reside on the same box or on a different server. Since the DRE process is multithreaded the
DRE process can take advantage the multiple processors. The DRE instance will have an IP
address, a query port number and a index port number. All spidering processed will
communicate with the DRE using the index port number and all query requests will be
handled through the query port. Since the DRE can be accessed via a IP address this allows
the DRE to be distributed onto different machines.

All Autonomy modules that need access to the DRE use this method of communicating with
the DRE. Certain thresholds of a DRE instance is that is can hold up to 1.5 million documents
before another instance of the DRE needs to be created. The ratio of server processors to DRE
is based on several factors. Those factors are query response, number of queries, indexing
load from the spiders. The Autonomy logs and reports will show when another processor
needs to be added to the configuration. If the server box cannot be expanded another server
box can be added to the configuration.

The HTTPFetch can also scale by creating multiple instances of the HTTPFetch. These
additional HTTPFetches can reside on the same server or on a different server. The
HTTPFetch is single threaded and can not take advantage of multiple processor machines.
The rule of thumb for configuring at HTTPFetch is no more than 150 spider jobs per instance
of the HTTPFetch. There is also a one to one ratio between the processor and the HTTPFetch
instance.

The following data diagram is based on the configuration stated in section 2.41. Autonomy
focuses on the number of queries/second and simultaneous queries and then determines the
number of users supported based on the average queries a user submits.

7.10. Directory Server

None

7.11. File Storage

None

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 71

7.12. Database Server

None

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 72

8 Applications Design

8.1. Web Browser

Not Applicable

8.2. Firewall

Not Applicable

8.3. Load Balancing

Not Applicable

8.4. Web Server

Not Applicable

8.5. Application Server

8.5.1. Web Application Design Model

This section presents a short overview of an application design guideline for Web
applications consisting of servlets, JSPs, and JavaBeans.

The general structure or design pattern of a typical SFA Web application is shown in the
following figure.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 73

Application Server

CICS
CICS

DB2
DB2

HTTP Server

HTML
Page with

Form

Result
JSP's

View
Beans

Command
Beans

Data
Beans

Other
Other

MQ
MQ

Figure 21 - Web Application Design Model

The major parts of such a design are discussed in the sequence of the flow of the application.

HTML page

The input page for each step is either a static HTML page or a dynamic HTML page created
from a previous step. The HTML page contains one or multiple forms that invoke a servlet
for processing of the next interaction. Input data can be validated through JavaScript in the
HTML page or passed to the servlet for detailed validation.

Servlet

The servlet gets control from the Application Server to perform basic control of flow. The
servlets validates all the data, and returns to the browser if data is incomplete or invalid. For
valid data, processing continues. The servlet sets up and calls command beans that perform
the business logic. The servlet initializes the view beans and registers them with the request
block so that the JSPs can find the view beans. Depending on the results of the command
beans, the servlets calls a JSP for output processing and formatting.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 74

Command Beans

Command beans control the processing of the business logic. Business logic may be
imbedded in the command bean, or the command bean delegates processing to back-end or
enterprise systems, such as relational databases, transactions systems (CICS, MQSeries, IMS,
and so forth).

A command bean may perform one specific function or it may contain many methods, each
for a specific task.

Results of back-end processing are stored in data beans.

Data beans

Data beans hold the results of processing that was performed by the command bean or by
back-end systems. For example, a data bean could contain an SQL result or the
communication area of a CICS transaction.

Data beans may not provide the necessary methods for a JSP to access the data; that is where
the view beans provide the function.

View beans

View beans provide the interface between the output producing JSPs and the data beans that
contain the dynamic data to be displayed in the output. Each data bean contains one or
multiple data beans and provides tailored methods so that the JSP has access to the data
stored in the data beans.

JSPs

The JSPs generate the output for the browser. In many cases that output contains again
form(s) to enable the user to continue an interaction with the application. JSP use tags to
declare the view beans. Through the view beans the JSP gets access to all the dynamic data
that must be displayed in the output.

Model - View – Controller

This design follows the model - view -controller design pattern:

• The JSPs (and HTML pages) provide the view,

• The servlet is the controller, and

• The command beans represent the model.

The data beans contain the data of the model and the view beans are helper classes to
provide a data channel between the view and the model.

The servlet (controller) interacts with the model (the command beans) and the view (the
JSPs). The servlet controls the application flow.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 75

8.5.2. SFA Web Application Architecture

The sections that follow detail the recommendations in the following technology areas
specific to the SFA Web Application Architecture:

• JavaScript

• JSPs and servlets

• Command beans

• JDBC / Structured Query Language for Java (SQLJ)

• Enterprise JavaBeans

• Connectors

JavaScript

JavaScript is a general-purpose object oriented programming language. It has great utility in
Web applications because of the browser and document objects that the language supports.
Client side JavaScript provides the capability to interact with HTML forms. You can use
JavaScript to validate user input on the client and help improve the performance of your Web
application by reducing the number of requests that flow over the network to the server.

To address various client side requirements, Netscape and Microsoft have extended their
implementations of JavaScript in version 1.2 by adding new browser objects. Because
Netscape's and Microsoft's extensions are different from each other, any script which uses
JavaScript 1.2 extensions must detect the browser being used, and select the correct
statements to run.

Versions 3.0 and earlier of both Netscape and Microsoft browsers don’t support these new
extensions. To run a script on most browsers, use JavaScript 1.1 that contains the core
elements of the ECMAScript standard. Reference [1] is an excellent book on JavaScript that
details the JavaScript objects and methods listing their origin and JavaScript level.

ECMA, a European standards body, has published a standard (ECMA-262) which is based
on JavaScript (from Netscape) and JScript (from Microsoft) called ECMAScript. The
ECMAScript standard defines a core set of objects for scripting in Web browsers. JavaScript
is a superset of ECMAScript. It is comprised of the core ECMAScript objects that run on both
Web browsers and servers, as well as a set of unique client specific and server specific objects.
The core objects include array, date, math, number, and string. On the client side, there are
document, form, frame, and window objects. These core objects enable the manipulation of
HTML documents (checking form fields, submitting forms, and creating dynamic pages),
and the manipulation of the browser (directing the browser to load other HTML pages,
display messages, etc.).

JSPs and Servlets

The Framework supports the development of interaction controller and page construction
logic using either Java servlets or Java Server Pages (JSP) technology. Both of these

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 76

implementation mechanisms have significant advantages over using CGI-BIN or Web server
plugins. You will need to decide whether to use JSPs or servlets or both in your Web
application.

JSPs can contain all the HTML tags that Web authors are familiar with. A JSP may contain
fragments of Java code which encapsulate the logic that generates the content for the page.
These code fragments may call out to JavaBeans to access reusable components and back-end
data. To learn more about JSPs visit http://www.javasoft.com/products/jsp/.

Servlets are small Java programs that run on the Web Application Server. They interact with
the servlet engine running on the Web Application Server through HTTP requests and
responses. JSPs are compiled into servlets before being executed on the Application Server.

The interaction controller part of a Web application, which is primarily concerned with
processing the HTTP request and invoking the correct business or UI logic, often lends itself
to implementation as a servlet. This is especially true in cases where one interaction
controller processes several types of user interactions. If your design dictates one interaction
controller per type of user interaction JSPs are a better fit. For example, login would be
handled by login.jsp, interaction1 by interaction1.jsp, interaction2 by interaction2.jsp and
logoff by logoff.jsp.

JSPs were designed to simplify the process of creating pages by separating Web presentation
from Web content. In the page construction logic of a Web application, the response sent to
the client is often a combination of template data and dynamically generated data. In this
situation, it is much easier to work with JSPs than to do everything with servlets.

Command Beans

Command beans provide a standard way to invoke a business logic request using a single
round-trip message. A command bean is a JavaBean that encapsulates a single request to a
target server (i.e., the server where the command is to be executed). The target server can be
the same JVM as the client or a separate JVM.

Command beans allow for a clean separation of User Interface (UI) and business logic. The
Web application parts (i.e. interaction controller and UI logic) can vary independently from
the command bean’s implementation.

The steps in a command bean’s execution are:

• The JSP/servlet instantiates the command bean. It then sets the command bean’s input
properties. Finally, the JSP/servlet calls the perform method on the command bean

• The perform method, if successful, returns a copy of the command bean with its output
properties set to the results of the underlying business logic task

• Control flows to the JSP/Servlet, which is now free to query the output properties of the
command bean

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 77

JDBC / SQLJ

The business logic in a command bean will access information in a database for the database
centric scenario. JDBC is a Java API for database-independent connectivity. It provides a
straightforward way to map SQL types to Java types. With JDBC you can connect to your
relational databases, and create and execute dynamic SQL statements in Java. JDBC drivers
are RDBMS specific, provided by the DBMS vendor. Given common schemas between two
databases an application can be switched between one and the other by changing the JDBC
driver name and URL. A common practice is to place the JDBC driver name and URL
information in a property or configuration file.

SQLJ provides a simplified syntax for JDBC that allows you to write SQL-like statements
directly in your Java source code. The SQLJ preprocessor generates static SQL providing
better performance than dynamic SQL. SQLJ will also generate iterator Java classes. These
iterators allow you to navigate query results using a very simple "get next" protocol.

Enterprise JavaBeans (Release 2 Topology)

Enterprise JavaBeans (EJBs) are distinguished from JavaBeans in that they are non-visual,
designed to be installed on a server, and accessed remotely by a client.

There are two types of Enterprise JavaBeans:

• Session

• Entity

A typical session Bean has the following characteristics:

• Executes on behalf of a single client

• Can be transactional

• Can update data in an underlying database

• Is relatively short lived

• Is destroyed when the EJB server fails. The client has to establish a new session Bean to
continue computation.

• Does not represent persistent data that should be stored in a database

• Provides a scalable runtime environment to execute a large number of session Beans
concurrently

A typical entity Bean has the following characteristics:

• Represents data in a database

• Can be transactional

• Shared access from multiple users

• Can be long-lived (lives as long as the data in the database)

• Survives EJB server crashes. A crash is transparent to the client

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 78

• Provides a scalable runtime environment for a large number of concurrently active entity
objects

Typically an entity Bean is used for information that has to survive system crashes, while in
session Beans, the data is transient and does not survive when the client's browser is closed.
For example, a shopping cart contains information that may be discarded uses a session
Bean, and an invoice issued after the purchase of the items is an entity Bean. An entity Bean
very often makes direct calls on a database.

The business logic of a Web application often accesses data in a database. EJB EntityBeans
are a convenient way to wrap the relational database layer in an object layer, hiding the
complexity of database access. Because a single business task may involve accessing several
tables in a database, modeling rows in those tables with EntityBeans makes it easier for
command beans to manipulate the data.

Connectors

e-business connectors are gateway products that enable access to enterprise and legacy
applications and data from your Web application. Connector products provide Java
interfaces for accessing database, data communications, messaging and distributed
filesystem services. The command bean model allows coding to the specific connector
interface(s) while hiding the connector logic from the rest of the Web application.

8.6. Component Broker

TBD

8.7. Content Management

Choosing the right branch structure is a critical step in configuring a TeamSite installation. A
good branch structure makes work processes efficient, because it minimizes interference
between developers as they work on tasks concurrently, and eliminates extra steps involved
in updating and synchronizing content from one branch to another.

8.7.1. Design Principles

Logically independent Website

In terms of content, we introduce the concept of a logically independent Website. By this we
mean that the functionality of a logically independent Website is more or less complete, in
terms of the files required to render that Website. For example, in a pure HTML Website, the
HTML files and the graphics are contained within the logical Website. For a CGI-based
Website, the CGI programs and scripts are contained within the logical Website. For an
application server based Website the logical Website includes all the resources required by
the application server, including the template files and the configuration files are contained in
the logical Website. This means that the Website is separate from a content perspective.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 79

Another property of a logically independent Website is that the developers working on that
logical Website can release content changes more or less independently from other content
outside the logical Website. This means that the Website is separate from a development
perspective.

Lastly, there are few, if any links from outside a logical Website into that Website. The
inbound links, if any, are to defined and stable pages. For example, a "press release" logical
Website of a Website has few inbound links if other logical Websites of the Website point to
the index page, or to a well-known URL from which all press releases can be rendered. On
the other hand, it is less independent if other logical Websites point directly to press release
pages. (The inbound links can be thought of the "API" of that logical Website of the Website.)

Task overlap

The second important concept is that of task overlap. By task overlap we want to assess how
long it takes to start and complete a given change, with respect to other changes occurring to
the Website at the same time. The key concept is to identify when a set of changes are
released to the production Website, especially in regards to allow overlapping changes to go
to production at or around the same time.

With overlapping tasks, determine whether the changes will be released at the same time or
not. Changes for tasks with different release times should be kept separate to reduce
interference. Changes interfere with one another when one change is complete and ready for
approval or movement to production, but another change in the same workarea isn’t
complete, and hence prevents the first change from being approved or deployed to
production.

There are different ways of keeping the changes separate. The simplest is to put changes for
a task into separate workareas. There’s a common pattern that keeps changes in a workarea.
This can be done for example with workareas labeled Mon – Fri. Whatever content is staged
for deployment in the respective workarea will be deployed at a scheduled time.

Basic Branch Patterns

This section introduces three common branch patterns, and a fourth special pattern that finds
occasional use:

• Single-branch pattern

• Agency pattern (multiple independent branches)

• Long-term/short-term pattern

• Dependent-branch pattern

These patterns form the fundamental building blocks of more complex branch structures.
Though they might seem simple, applying these patterns requires a solid understanding of
the concepts introduced earlier.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 80

These patterns form the fundamental building blocks of more complex branch structures.
Though they might seem simple, applying these patterns requires a solid understanding of
the concepts introduced earlier.

Single-branch pattern

The most common branch structure is the single-branch configuration. The earlier discussion
regarding logically independent Website and task overlap comes into play because we
arrange for a branch to hold a logically independent Website. In addition, we use the results
of the task overlap analysis because the single branch needs to have a development flow that
is consistent with having a single staging area. Specifically, this means that the task overlap
is relatively small. For example, all tasks start and complete within a week or a few days. In
contrast, a situation for which the single branch pattern wouldn’t apply is one where half the
Web team is working on a major revamp of the Website, while the other half pushes out
incremental fixes and regularly scheduled content changes. This latter situation might be
better suited for the long-term/short-term branch pattern discussed in the next section.

Figure 22 - Logically independent Web content goes into single-branch

Once we’ve determined that the logically independent Web content that goes into a branch,
and we’ve analyzed the workflow to find the typical tasks and the overlap, we find a
workarea structure that is compatible with that flow. Within the branch, there are a number
of common ways to organize the workareas. The simplest is to do the work for a single task
within a workarea. This might be a Web developer working independently, or this could be
a small team consisting of an HTML developer and an artist.

Tasks should be distinguished by whether it interferes with the functionality of the Website,
whether it interferes with the review and approval of the change, and when it will be
submitted. If a task interferes with other tasks, changes for that task should be placed into its
own workarea.

Branch:

/main/SFAInternet

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 81

Workarea configurations

A workarea in a branch corresponds to a single task, where a task consists of a set of
interrelated changes to Web content. Here are some examples of tasks:

• A single developer makes an HTML change

• A Web designer and a graphic designer collaborate on new pages

• A developer changes the logic in C++ files to fix a bug

• Several SFA managers create press releases, all of which are scheduled to go-live on the
same day

Notice that in the first and third examples a single developer uses a workarea.

In the second and fourth examples several people work in the same workarea.

In the second example a Web designer and a graphic artist collaborate on new pages. In this
case, it makes sense for them to work in the same workarea, because their changes don’t
interfere. For example, the Web designer will change the HTML, while the artist will change
the images. In the fourth example the SFA managers make changes independently, but the
commonality is that all of their changes go-live on the same day.

Per project workarea

A very common situation is when a single developer, or a small group working closely
together, have changes that are interrelated, and which are submitted at the same time. They
are interrelated because the assets reference one another, or they use one another. For
example, when an HTML developer and a graphic artist develop assets, the HTML code
might refer to an image. Similarly, Perl code might use a related Perl module. In this
situation, it makes sense to use a separate workarea for each such task.

After the changes for a project have been submitted, the workarea can be reused for the next
project. That’s why it often makes sense to give each developer a workarea. In this case, a
workarea is used for a succession of non-overlapping projects.

If a single developer has multiple ongoing projects, where the changes from one have
different submission times, then it may make sense for that developer to have several
workareas. For example, in the figure above, Richard has two workareas that she can use for
changes that he needs to keep separate, because they have different due dates.

Per time slot workarea

Another common situation is when there is content that has a strong time component to it.
For example, a press release goes live on a specific day, or a product promotion begins and
ends on specific days. In this situation, it sometimes makes sense to define one workarea per
day, with 31 workareas to correspond to each day of a month. For example, a workarea
called, “day12” contains all content that is scheduled to go to production on the upcoming
12th of the month.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 82

In the simplified usage of this technique shown below, there is a workarea per day of the
week.

Agency pattern

The agency pattern is used when we have multiple logically independent Websites. This
pattern gets its name because Web development agencies produce Websites for many clients.
Since each client’s Website is independent from each other, each Website becomes a project
onto itself. To keep each project separate, each project uses a different TeamSite branch.
Although this pattern is easy to spot in the case of Web development agencies, it is common
to see this pattern in other situations as well.

Branch:
/main/intranet

Branch:
/main/SFAinternet

Figure 23 - Multiple independent Website, or “agency pattern.

For example, let’s take the case of a Website for a consumer retail Website, which has a single
point of entry through a corporate homepage. After detailed discussions with the Web
development team, the Web content and work flow indicates that the Website can be
decomposed into logically independent Websites for the corporate information section,
including press releases and job listings, as distinct from the e-commerce section of the
corporate Website.

In this hypothetical example, it is appropriate to decompose what is one large physical
Website, into two logically independent Websites: one for the static section and another for
the application server driven e-commerce Website. The information section and the e-
commerce sections of the Website are independent from a content perspective, because each
doesn’t rely on the other from content, graphics, and application logic. Similarly, the two

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 83

sections are independent from a development perspective because they are done by different
groups of developers, and the review and approval processes are distinct.

It is important to stress that identifying the logically independent Websites requires both
studying the external look of the Website, and gaining an understanding of the internal
organization of the content and the teams that develop the content.

If a logical Website satisfies the "independence" criteria in the content analysis, then it is a
candidate to be version controlled in its own branch. In this case, developers are assigned to
work in certain branches, and can be kept out of other branches. This is essence of the agency
pattern.

Short-term/long-term branch pattern

The long-term/short-term pattern is used when there’s a long-term Web development effort
going on concurrently with short-term changes to a Website. The essential point is that there
are changes for the long-term branch that overlap with changes for the short-term branch,
and the changes cannot go to production together. For this reason, the development efforts
are split apart and done separately.

Sometimes it isn’t possible to keep changes in a workarea. This typically occurs for two
reasons. First, this occurs when changes occur in gradual steps, and the incremental steps
need to be version controlled. Second, this occurs when different people or teams do
changes, and the separate changes need to be version controlled in stages. If changes for a
given task cannot be kept in a workarea, then we ask whether the changes will be released at
the same time. For example, suppose there is a press release and a bug fix to the search
engine, and they are both going out tomorrow morning. Two separate teams are doing the
changes, and we let each team make their changes in separate workareas. By doing this, each
team can get their work reviewed and approved separately. And we don’t care in which
order they complete their tasks. Eventually the work is integrated, and the changes are
moved to production. If the changes overlap, but are going to production at the same time,
then a single branch is sufficient.

This leaves us with the situation that changes overlap, changes cannot be kept in only in a
workarea, and the changes are going to production at different times. In this case, we
introduce separate branches. Typically this corresponds to the long-term/short-term pattern.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 84

Branch:
/main/SFAinternet/longterm

Branch:
/main/SFAinternet/shortterm

Branch:
/main/ecomm

Figure 24 - The Longterm / Shortterm branch pattern

8.7.2. Dependent branch pattern

In the dependent branch pattern, a branch contains a set of Web assets that aren’t logically
independent. For example, the “/images” directory or the “/cgi-bin” directory are kept in a
branch all to themselves. In particular, a branch that contains all the image assets, but
nothing else, doesn’t constitute a functioning Website. This pattern is used when there’s a
compelling reason to subdivide into branches what otherwise would be an independent
Website:

• The volume of assets exceeds the amount that reasonably wants to be kept in a single
branch

• There is a need to factor out assets for a common subsystem

• There is a strong organizational requirement to separate the assets

• There is a need to version control assets separately within a sub-branch

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 85

Branch:
/main/policy

Branch:
/main/form

Branch:
/main/cgi-bin

Branch:
/main/images

Remap /cgi-bin
and /images to
other branches

Remap /cgi-bin
and /images to
other branches

Figure 25 - The Dependent Branch Pattern

With a super large Website, the volume of assets that logically stands out as independent
exceed what you’d want to manage as a single branch. For example, more assets in a branch
mean that workarea update time is increased. To keep operation times within reasonable
bounds, subdividing a super large Website into manageable dependent branches can be a
viable solution.

Sometimes several logically independent Websites use a common subsystem, such as images
or cgi-bin. In this situation, you’d prefer to not replicate copies of each of these subsystems
into each branch. A good approach to this situation is to factor out the common subsystem as
a dependent branch.

Occasionally organizations divide responsibilities of subparts of a Website very strongly, and
want to reflect that in the organization of the assets. For example, a CGI development group
is solely responsible for CGI development, and a separate content development group
produces HTML assets. Ordinarily, the logically independent Website principle suggests
keeping those subsystems together in a single branch, to facilitate the ability to test, quality
assure, and approve the integrated Website. By separating these subsystems into branches,
and if restrictions are placed on who can make changes in the branches, then an organization
assures itself, for instance, that HTML changes originate solely from the HTML branch.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 86

The need to perform additional versioning is another reason to form a dependent Website
branch. This arises when a subsystem has content that needs to be versioned at checkpoints
more finely grained than if they were in a single branch. For example, a file goes through an
approval procedure with multiple reviewers. You want to checkpoint the file before the
review starts. Changes resulting from the first review are checkpointed by submitting to the
sub-branch, and similarly for the second review. At any stage of the process, versions of the
file are available for comparison and rollback. When the reviews are completed, the file is
propagated from the sub-branch to the upper branch.

Dependent Website branch arrangements typically introduces the need for additional proxy
remap configuration, because without this some or all virtualization would be lost. For
example, suppose the “/images” subsystem were factored apart from the “/htdocs” Web
assets. What would otherwise be a functionally independent Website, would be no longer
function alone. A reference to a file such as “/images/logo.gif” would be broken. To restore
the link, a proxy rule that remaps a reference to “/images” in the htdocs branch should be
introduced to map to the images branch.

Keep in mind that the proxy configuration will need to be synchronized with any directory
and branch rearrangements. This introduces an additional level of maintenance effort. For
example, if another dimension of Web asset factoring were introduced, say for the
“/include” subsystem, then the proxy configuration will need to be revisited.

8.8. Portal

The Portal component provides the ability for tight integration of third party applications via
a Java-based mechanism entitled the Viador Portlet Builder API. Portlets are content or
application services that are registered with the Viador Information Center and can be
controlled and deployed by any Viador portal interface. Content portlets include Web pages
and content feeds (news and weather) while application services include calendars, email,
and others. Portlet integration includes both simple launching from the portal by passing
user parameters and using the Viador API based integration approach that will provide
transparent application access.

The standards used for portlet coding is described in the following sections and will be
reviewed as part of the review process when considering a Viador-compliant portlet.

8.8.1. Java Coding Conventions

All portlets will be coded according to the Java coding conventions as outlined from Sun
Microsystems.

Enforcement of the coding conventions particularly in the area of commenting will be part of
the review process of the portlet.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 87

8.8.2. Standard Portlet Coding Template

Other Product Dependencies A standard code template will be used which includes all the
standard header information about the portlet with built-in commenting sections that can be
used. Portlets generally have the same skeleton of code that is used so a highly commented
template can be used to give the Java coder the needed format to get started with coding.
The code template will have the following items in the header section:

• Portlet Name

• Portlet Description

• Internet Dependencies

• User Administrator Settings

• Portlet Author(s)

A Java template header file, portlet_template.java, will be available as part of the Portlet
Standardization Kit and it is strongly urged that this template be used as the starting point
for portlet development.

A longer-term solution to having a coding template will be to develop an automated tool that
can generate this template automatically with the correct naming conventions and cartridge
information. This could be done as a Java program or even simpler would be a JavaScript
interface.

8.8.3. Code Commenting

All portlet code must be commented extensively and in many cases over-commented so that
the concepts can be easily looked at and understood by the novice programmer. This means
it must go well beyond the comments that will be provided by the base template. The
standard for commenting code is broken down into two areas, implementation comments
and documentation comments.

Documentation comments can be fairly minimal but are valuable for the automated javadoc
tools to automatically generate HTML pages. Documentation comments are denoted with
the use of double asterisk comments, /**…*/ at the beginning of the comment. The Java
template header file has documentation comments for the minimum requirements.

Implementation comments should be generous and produced roughly every 5-10 lines of to
describe the code that is being executed. The comments themselves should be readable and
clear. Standard implementation comments use the /*…*/ or // values. The Java template
header file has default implementation comments in place and others ready to be filled in
according to the portlet that is coded.

8.8.4. Portlet Generated HTML Pages and Error Messages

Many portlets will produce HTML pages as part of their defined actions. All HTML pages
that are produced by the portlet will use standard HTML and will be very descriptive in their

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 88

output. HTML that is produced will be checked using the standard HTML validation
programs available today.

The use of appropriate marketing approved logos and images in the HTML that is generated
is encouraged to promote the branding of the portlet and its perspective interface.

All portlet error messages produced via HTML will be verbose and reviewed for clarity.

8.8.5. Debugging and Exception Handling

Portlets may contain debugging methods or code as long as they can be turned on or off.

All portlets should contain a general method for exception handling. A generalized
exception handler would be desirable and can be made part of the standard coding template.
A portlet could potentially effect the performance of the Viador server so proper exception
handling is essential and if there are exceptions that could potentially show up on the Viador
Server console they should identify themselves as a portlet based exception if possible.

8.8.6. Viador

The Viador Portlet Builder API is a Java-based mechanism that provides tight integration of
3rd party applications into the Portal. Portlets are content or application services that are
registered with the Viador Information Center and can be controlled and deployed by any
Viador portal interface. Content portlets include Web pages and content feeds (news and
weather) while application services include calendars, email, and others. The Viador Portal
Tools are also types of portlets, for example, User Administration, Document Courier and
others

Portlet integration includes both simple launching from the portal by passing user
parameters and using the Viador API based integration approach that will provide
transparent application access.

8.8.7. Design Principles

The standard used for portlet coding is described in the following sections and will be
reviewed as part of the review process when considering a Viador compliant portlet.

8.8.8. Java Coding Conventions

All portlets will be coded according to the Java coding conventions as outlined from Sun
Microsystems.

Enforcement of the coding conventions particularly in the area of commenting will be part of
the review process of the portlet.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 89

8.8.9. Standard Portlet Coding Template

A standard code template will be used which includes all the standard header information
about the portlet with built-in commenting sections that can be used. Portlets generally have
the same skeleton of code that is used so a highly commented template can be used to give
the Java coder the needed format to get started with coding. The code template will have the
following items in the header section:

• Portlet Name

• Portlet Description

• Internet Dependencies

• Other Product Dependencies

• User Administrator Settings

• Portlet Author(s)

A Java template header file, portlet_template.java, will be available as part of the Portlet
Standardization Kit and it is strongly urged that this template be used as the starting point
for portlet development.

A longer term solution to having a coding template will be to develop an automated tool that
can generate this template automatically with the correct naming conventions and cartridge
information. This could be done as a Java program or even simpler would be a JavaScript
interface.

8.8.10. Code Commenting

All portlet code must be commented extensively and in many cases over-commented so that
the concepts can be easily looked at and understood by the novice programmer. This means
it must go well beyond the comments that will be provided by the base template. The
standard for commenting code is broken down into two areas, implementation comments
and documentation comments.

Documentation comments can be fairly minimal but are valuable for the automated javadoc
tools to automatically generate HTML pages. Documentation comments are denoted with
the use of double asterisk comments, /**…*/ at the beginning of the comment. The Java
template header file has documentation comments for the minimum requirements.

Implementation comments should be generous and produced roughly every 5-10 lines of to
describe the code that is being executed. The comments themselves should be readable and
clear. Standard implementation comments use the /*…*/ or // values. The Java template
header file has default implementation comments in place and others ready to be filled in
according to the portlet that is coded.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 90

8.8.11. Portlet Generated HTML Pages and Error Messages

Many portlets will produce HTML pages as part of their defined actions. All HTML pages
that are produced by the portlet will use standard HTML and will be very descriptive in their
output. HTML that is produced will be checked using the standard HTML validation
programs available today.

The use of appropriate marketing approved logos and images in the HTML that is generated
is encouraged to promote the branding of the portlet and its perspective interface.

All portlet error messages produced via HTML will be verbose and reviewed for clarity.

8.8.12. Debugging and Exception Handling

Portlets may contain debugging methods or code as long as they can be turned on or off.

All portlets should contain a general method for exception handling. A generalized
exception handler would be desirable and can be made part of the standard coding template.
A portlet could potentially effect the performance of the Viador server so proper exception
handling is essential and if there are exceptions that could potentially show up on the Viador
Server console they should identify themselves as a portlet based exception if possible.

8.9. Knowledge Management

Not Applicable

8.10. Directory Server

Not Applicable

8.11. File Storage

Not Applicable

8.12. Database Server

Not Applicable

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 91

9 Additional Resources

The following sections provide resources for additional information.

9.1. Web Browser
Table 33 – Additional Resources: Web Browswer

Web Browser Description

Microsoft Internet Explorer, Netscape Navigator, Lynx

Microsoft® Pocket Guide to Microsoft Internet Explorer 5

/catalog/display.asp?title=4538&subid=22

The portable, reliable reference to Microsoft Internet
Explorer 5, ideal for the frequent traveler or anyone seeking
quick answers about the popular Web browser's tools,
terms, and techniques.

Get Going with the Internet

http://www.knowwareglobal.com/eng/internet_get_going.h
tm

Introduction to the Internet, its components and the
browsers that can be used to achieve access to the Net.

Lynx Help for Beginners

http://www.chass.utoronto.ca/%7Epurslow/lhfb.html

This outline is especially for people who are just starting
to use Lynx or have used it for some time without
exploring its features very far. It answers the sorts of
questions everyone asks at first.

9.2. Firewall
Table 34 – Additional Resources - Firewall

Firewall Description

Checkpoint

Network Security Info Pack

http://www.checkpoint.com/forms/newliter.htm

Information on Check Point's Network Security
solutions. The package includes: FireWall-1 4.0
Brochure, VPN-1 Gateway Data Sheet, Stateful
Inspection Tech Note, and the OPSEC (Open Platform
for Security) Tech Note.

Redefining the VPN:
A White Paper

http://cgi.us.checkpoint.com/rl/resourcelib.asp?state=1&item=VP
NWP

Document explaining typical VPN implementations
and a helpful Buyer's Guide.

VPN Security Components

http://cgi.us.checkpoint.com/rl/resourcelib.asp?state=1&item=VP
NSec

Document describing the three essential components
of a Virtual Private Network: security, traffic control,
and enterprise management.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 92

9.3. Load Balancing
Table 35 – Additional Resources – Load Balancing

Load Balancing Description

IBM Performance Pack

Review Guide

http://www-
4.ibm.com/software/Webservers/perfpack/library.html

This guide is designed to show you why IBM
WebSphere Performance Pack for Multiplatforms V2.0
is the Web server environment of choice for Internet
Service Providers and corporate technology specialists
who need to reduce Web server congestion, increase
availability, and improve Web server performance.

Getting Started

http://www-
4.ibm.com/software/Webservers/perfpack/library.html

Please note that this book contains links to other books
that are shipped with Performance Pack. If you have
not installed the other books, some links won't resolve.
User's guides for other products can be found at their
respective Websites.

IBM WebSphere Performance Pack: Web Content Management
with IBM AFS Enterprise File System

http://www-
4.ibm.com/software/Webservers/perfpack/library.html

This Redbook will give you a clear understanding of
the features of IBM AFS Enterprise File System, the File
Sharing component of IBM WebSphere Performance
Pack. It shows how to plan for, install, configure, use,
tune and troubleshoot this component and offers
specific implementation examples. Moreover, it helps
explain how to build complex scenarios that involve all
the components of IBM WebSphere Performance Pack,
to give you a better understanding of the technologies
involved.

9.4. Web Server
Table 36 – Additional Resources – Web Server

Web Server Description

IBM HTTP Server

Redbook Library

http://www.redbooks.ibm.com/booklist.html

Contains all current IBM Redbooks. Not all
books are available on hardcopy or CD-ROM.

Redpiece Library

http://www.redbooks.ibm.com/redpieces.html

Contains IBM Redbooks under development
and are published here for those who need the
information now and may contain spelling,
layout and grammatical errors.

Redpaper Library

http://www.redbooks.ibm.com/redpapers.html

A developing resource of shorter technical
documents.

9.5. Application Server

Installers and system administrators

If you need to install, configure, or manage a version of the WebSphere Application Server,
read one or more of the following:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 93

• To learn the basics of installing and configuring the Advanced Application Server, read
Getting Started with Advanced Edition. This document is designed for first-time users of the
Advanced Application Server who want to get a simple system up and running quickly.

• To learn about managing the Advanced Application Server, access the Documentation
Center and the online help available with the WebSphere Administrative Console.

• To learn the basics of installing CB, read Getting Started with Component Broker; to learn the
basics of installing and configuring TXSeries, read Getting Started with TXSeries. These
documents are designed for first-time users of Enterprise Application Server who want to
get either CB or TXSeries up and running quickly.

• To learn about installing, configuring, and managing a more complicated system with
the Enterprise Application Server, start with the Planning, Performance, and Installation
Guide for CB or the Planning and Installation Guide for TXSeries.

• To learn how to use the adaptors available with CB, start by reading one or more of the
following:

q CICS and IMS Application Adaptor Quick Beginnings

q Oracle Application Adaptor Quick Beginnings

q MQSeries Application Adaptor Quick Beginnings

Application developers and system architects

If you need to design business systems or develop applications using a version of the
WebSphere Application Server, read one or more of the following documents:

• To learn the basics of developing enterprise beans and related components in compliance
with the Sun Microsystems Enterprise JavaBeans ™ Specification, start with Writing
Enterprise Beans in WebSphere. This document provides instructions for developing
enterprise beans in both the Advanced Application Server and the Enterprise Application
Server.

• To learn about the broader issues involved in designing and developing systems and
applications in the WebSphere Family, read Building Business Solutions with the WebSphere
Family.

• To learn about developing applications in CB, start by reading the Application
Development Tools Guide and then read the Component Broker Programming Guide.

Table 37 - Additional Resources – Application Server

Order
Number

Book name Book description

Common documentation for WebSphere Application Server Enterprise Edition (for all supported platforms)

SC09-4430
Introduction to WebSphere
Application Server

Provides a common familywide overview of all editions of WebSphere
Application Server and the contents of each edition.

SC09-4431
Writing Enterprise Beans in
WebSphere

Provides an introduction to programming with Enterprise JavaBeans in
the Advanced and Enterprise Editions of WebSphere Application Server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 94

Order
Number

Book name Book description

SC09-4432
Building Business Solutions with
the WebSphere Family

Provides programming examples and scenarios that demonstrate
application development and recommended programming practices
across the WebSphere Application Server family.

9.6. Component Broker
Table 38 – Additional Resources – Component Broker

Order
Number Book name Book description

Common Component Broker documentation (for all supported platforms)

SC09-4439
CICS and IMS Application

Adaptor Quick Beginnings

Provides information on installing and verifying the application adaptor
that provides communications between CB applications and CICS or IMS.

SC09-4440
Oracle Application Adaptor

Quick Beginnings

Provides information on installing and verifying the application adaptor
that provides communications between CB applications and an Oracle
database.

SC09-4441
MQSeries Application Adaptor

Quick Beginnings

Provides information on installing and verifying theapplication adaptor
that provides communications between CB applications and MQSeries.

SC09-4442 Programming Guide

Provides information on developing CB applications in all supported
programming languages on all supported platforms. It describes the
programming model, including business objects, data objects, and
includes information about various basic programming issues.

SC09-4443 Advanced Programming Guide

Describes CB’s implementation of the Common Object Request Broker
Architecture (CORBA)Object Service; the CB Object Request Broker
(ORB); Cache, Notification, Query, Session, and other Services;
interlanguage object model (IOM); and workload management.

SC09-4444
MQSeries Application Adaptor
Concepts and Development
Guide

Introduces the MQSeries Procedural Application Adaptor and provides
information about developing applications that use both CB and
MQSeries.

SC09-4445 System Administration Guide
Provides information on administering CB and CB applications on all
supported platforms. Also provides general information about using the
System Manager interface.

SC09-4445 System Administration Guide
Provides information on administering CB and CB applications on all
supported platforms. Also provides general information about using the
System Manager interface.

SC09-4446
Programming Reference Volume
1

With Volume 2, documents the complete CB application programming
interfaces (APIs) available for all supported programming languages.

In online formats (HTML and PDF), the Programming Reference is provided
as a single volume.

SC09-4447
Programming Reference Volume
2

With Volume 1, documents the complete CB application programming
interfaces (APIs) available for all supported programming languages.

In online formats (HTML and PDF), the Programming Reference is provided
as a single volume.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 95

Order
Number

Book name Book description

SC09-4448
Application Development Tools
Guide

Provides information about using the CBToolkit components, with a
focus on common development scenarios such as inheritance and team
development.

SC09-4449 Problem Determination Guide

Provides information to help administrators and programmers identify
and solve problems with CB and CB applications.

It includes information on installation problems, run-time errors,
debugging of applications, and analysis of log messages.

SC09-4450 Glossary Lists and defines terms commonly used in Component roker
documentation.

GC09-4490
Component Broker Release

Notes

Provides platform- and release-specific information about CB, including
descriptions of new features that are more thorough than those in the CB
README file, information for features or changes learned too late for
incorporation into the product documentation, and information about
known restrictions associated with CB and, where possible, suitable
workarounds.

Component Broker for Solaris documentation

SC09-4435
Getting Started with Component
Broker Provides simple, straightforward scenarios for setting up CB on Solaris.

SC09-4438
Planning, Performance, and

Installation Guide

Provides complete instructions for installing and configuring the latest
version of CB on Solaris.

9.7. Content Management
Table 39 – Additional Resources – Content Management

Content Management Description

Interwoven

http://www.beasys.com/press/releases/2000/0427_Interwo
ven_partner.html

Interwoven Partnership with BEA Systems

http://support.interwoven.com Library of all Manuals for TeamSite

http://www.zdnet.com/products/stories/overview/0,8826,
250441,00.html

http://industry.java.sun.com/javanews/stories/story2/0,10
72,21399,00.html

TeamSite classes offered through Intershop

http://www.intraware.com/ms/mktg/ds/iwov_inter_team
site_ds.html - White Paper Datasheet on TeamSitefffa

Product Review on TeamSite, Pricing, Support etc.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 96

9.8. Portal
Table 40 – Additional Resources – Portal

Portal Description

Viador Portal

Viador Product Datasheet

http://www.viador.com/pdfs/Product_Data_Sheet.pdf

Summary of Viador’s offerings, both technical and business
value aspects.b

Viador Portal Suite Datasheet

http://www.viador.com/pdfs/E-Portal_Suite.pdf

Summary of Viador’s E-Portal Suite, technical details,
business uses.

What is a Portal – Really?

http://www.viador.com/portal/Viador_Portal_Presentation
.ppt

This animated online presentation brings to life the e-portal,
and illustrates its strengths, uses and business value.

9.9. Knowledge Management
Table 41 – Additional Resources –Knowledge Management

Knowledge Management Description

Autonomy

Doculabs' Executive Brief :
Doculabs' Functional Review of Autonomy

http://www.autonomy.com/tech/doculabsanalysis.htm

This Executive Brief provides background information on
Autonomy, Inc., and presents Doculabs’ analysis of
Autonomy’s KM technologies: Knowledge Server,
Knowledge Update, and Knowledge Builder.

Buttler Group Report

http://www.autonomy.com/tech/wp.html

Summary of Autonomy’s Knowledge Suite, pluses and
minuses, and technical details.

IDC's White Paper on Autonomy:
Automating Content Integration with Autonomy

http://www.autonomy.com/tech/idc.htm

This White Paper analyzes the role of unstructured content in
E-Business applications, and how the Autonomy Content
Infrastructure can serve to integrate this content across an
existing E-Business architecture.

Autonomy Technology Whitepaper

http://www.autonomy.com/tech/wp.html

Autonomy’s technology offers a breakthrough in managing
unstructured digital information, including word processing
and HTML-based files, email messages, and electronic news
feeds.

9.10. Directory Server
Table 42 – Additional Resources – Directory Server

Directory Server Description

Netscape Directory Server

Netscape Directory Server Administrator's Guide

/docs/manuals/index.html?content=directory/41/ag/conte
nts.htm

This guide explains how to administer the Netscape Directory
Server 4.1. After configuring your server, use this manual to
help maintain your server

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 97

Directory Server Description

Netscape Directory Server Installation Guide

http://developer.netscape.com/docs/manuals/directory/in
stall30/contents.htm

This guide explains how to install the Netscape Directory
Server 4.1. After configuring your server, use this manual to
help maintain your server.

Netscape Directory Server Deployment Guide

/docs/manuals/index.html?content=directory/41/de/conte
nts.htm

Guide explains aspects of planning for and deployment of the
Netscape Directory Server 4.1

9.11. File Storage
Table 43 – Additional Resources – File Storage

File Storage Description

AFS

Managing AFS – the Andrew File System

http://www.amazon.com/exec/obidos/ASIN/0138027293/
bookmag/102-5242491-4840951

Written for UNIX system administrators, this guide deals
with AFS, a high-end UNIX filing system developed at
Carnegie Mellon University and used widely in many
industries such as banking and finance. This title explains
how to manage AFS to its greatest effect including the
installation of an adequate server setup to handle thousands
of clients with a minimum of administrator and hardware
overhead. .

IBM AFS Administration Guide

http://www.transarc.com/Library/documentation/afs/3.6/
unix/en_US/HTML/AdminGd/auagd002.htm

This guide describes the concepts and procedures that an
AFS(R) system administrator needs to know. It assumes
familiarity with UNIX(R) administration, but no previous
knowledge of AFS.

IBM AFS Quick Beginnings

http://www.transarc.com/Library/documentation/afs/3.6/
unix/en_US/HTML/QkBegin/auqbg002.htm

This guide explains how to install and configure AFS(R) server
and client machines. It assumes that the reader is familiar
with UNIX(R) system administration, but not AFS.

9.12. Database Server
Table 44 – Additional Resources – Database Server

Resource Description

Database Server - Oracle 8i

Armaghan's SQL PlusPlus

http://www.oracleprofessionalnewsletter.com

SQL PlusPlus adds more then 120 command to your Oracle
SQL*Plus. It also contains a very powerful PLSQL Code
Generator for generating production-ready PLSQL Code for
Table APIs and Web.

OraDev.com - for Oracle Developers

http://www.xs4all.nl/~defcom/index.html

Site with categorized links to the Oracle world, book
description, scripts, hints and tips.

Adelante - Oracle DBA's and Consultants
http://www.adelante.u-net.com/

Site contains Oracle scripts and tips, and an Oracle DBA Quiz.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 98

Resource Description

Case method and OCP revision notes
http://www.pitchmark.demon.co.uk/case.htm

Contains Word 97 document templates for the case method
and revision notes for the Oracle Certified Professional
program.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 99

10 Product Overviews

10.1. Web Browser

The Web Browser component is the user interface to the content provided by the SFA
application. The Web Browser is any commercial COTS product capable of rendering HTML
and that utilizes HTTP for communication to the SFA application. The typical component is
a personal computing device (PC, etc.) supporting either Netscape Navigator or Microsoft
Internet Explorer. The Web Browser component is expected to support SSL and may support
some level of Dynamic Hypertext Markup Language (DHTML), except that DHTML is not
being produced by the SFA application. The SFA application does not produce any mobile
or active HTML components.

The Web Browser component is provided by each individual user and is configured
appropriately for the user organization. Access to the IA applications is through a URL.

10.2. Firewall

The IA assumes the existence and operation of Firewall components to screen public user
access and protect SFA private assets. The Firewall components are configured to produce
an isolation network “demilitarized zone” (DMZ).

Firewalls provide services that can be used to control access from a less trusted network to a
more trusted network. Traditional implementations of firewall services include:

• The Protocol Firewall

• The Domain Firewall

The Protocol Firewall and Domain Firewall nodes provide increasing levels of protection at
the expense of increasing computing resource requirements. The Protocol Firewall is
typically implemented as an internet protocol (IP) Router, while the Domain Firewall as a
dedicated server node. The IA places certain Load Balancing components within the DMZ to
deliberately restrict the proliferation of firewall port penetrations.

The Firewall component is provided by the VDC and its implementation is independent of
the IA components. The following diagram illustrates the port penetrations required of the
firewall components.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 100

.

Firewall

.

FirewallDMZ LAN

HTTP Port: 80
SSL POrt: 443

Figure 26 - IA Firewall Port Penetrations

10.3. Load Balancing

The Load Balancing component distributes workload across replicated components of the IA.
The principal workload distribution opportunities are URL routing and portal brokering.

The IBM SecureWay ND COTS product is utilized for intelligent routing of HTTP URL
requests across the IHS set. ND performs load balancing using a sophisticated workload
assessment mechanism. The product is installed within the Intranet and directs IP packets
from the virtual Website IP address to the IHS Website cluster. ND is aware of IHS status and
redirects IP traffic to avoid a failed IHS.

ND is configured in a high availability master and slave redundant configuration. In this
configuration the master ND performs the IP redirection and the slave replica monitors the
master. When the master fails, the slaves negotiate and a slave asserts as master.

The Load Balancing component is implemented by the IBM WebSphere Performance Pack
(Performance Pack) and provides a facility to reduce Web server congestion, increase content
availability, and improve Web server performance. Performance Pack is used across the IBM
WebSphere Application Server editions. It provides sophisticated detection of system
utilization and error events across multiple networks and servers. It is extremely robust and
scalable, providing caching of content across multiple servers and automating the replication
and mirroring of data and applications. Performance Pack is geared for Internet Service
Providers (ISP), whether they are in the ISP business or in the business of providing access to
internal users of corporate information technology (IT).

ND improves the performance of servers by basing its load balancing decision not only on
the servers’ availability, capability and workload, but also on many other user-defined
criteria as well. Using ND, the SFA Websites can take advantage of differentiated qualities of
service, based on request origin, request content and overall load on the system. The entire
load balancing operation is transparent to end users and other applications.

The ND component of IBM WebSphere Performance Pack consists of three sub-components
that can be used separately or together to provide superior load-balancing results:

• Dispatcher

• Interactive Session Support (ISS)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 101

• Content Based Routing (CBR)

The Dispatcher component can be used by itself to balance the load on servers within a local
area network (LAN) or wide area network (WAN) using a number of weights and
measurements that are dynamically set by Dispatcher. This function provides load balancing
at a level of specific services, such as HTTP, file transfer protocol (FTP), secure socket layer
(SSL), network news transport protocol (NNTP), post office protocol 3 (POP3), simple mail
transfer protocol (SMTP), and Telnet. It does not use a domain name server (DNS) to map
domain names to IP addresses.

The ISS component can be used by itself to balance the load on servers within a local or wide
area network using a DNS round-robin approach or a more advanced user-specified
approach. Load balancing is performed at the machine level. ISS can also be used to provide
server load information to a Dispatcher machine.

When used for load balancing, ISS works in conjunction with the DNS server to map DNS
names of ISS services to IP addresses. When used to provide server load information, a DNS
is not required.

The CBR component works along with Web Traffic Express (WTE) to load balance client
Web requests to specified servers; the routing is determined by comparing the content of the
request to rules that have been defined in the CBR component.

10.3.1. How the Dispatcher Function Works

The Dispatcher creates the illusion of having just one server by grouping systems together
into a cluster that behaves as a single, virtual server. The service provided is no longer tied to
a specific server system. Therefore, systems can be added and removed from the cluster, or
can be shut down for maintenance or other purposes, while maintaining continuous service.
For the service requesters (clients), the balanced traffic among servers seems to be a single,
virtual server, and the site appears as a single IP address to the world. All requests are sent to
the IP address of the Dispatcher server, which decides for each client request which
transmission control protocol (TCP) server is the best one to accept requests, according to
certain dynamically set weights. The Dispatcher routes the client’s request to the selected
TCP server, and then the server responds directly to the client without any further
involvement of the Dispatcher. The Dispatcher can also detect a failed server and route
traffic around it.

The Dispatcher receives the packets sent to the cluster. These packets have a source and a
destination address; the destination address is the IP address of the cluster. All servers in the
cluster and in the Dispatcher system have their own IP address. In addition, they have an
alias for the IP address of the cluster. The Dispatcher system has the cluster address aliased
on the network interface, while all the TCP servers that will be load balanced by this ND
machine have the cluster address aliased on the loopback adapter. The Dispatcher system
check which server is the next best server to handle the load and routes the packet to that
server. The Dispatcher routes this request based on the hardware address of the network
adapter (Media Access Control (MAC) address) of the chosen server. It changes the hardware

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 102

address of the packet to the hardware address of the selected server and sends the packet to
the server. However, the Dispatcher does not change the source and destination IP addresses
in the packet. The server receives the packet and accepts it because all servers in the cluster
have an alias for the cluster’s IP address on the loopback interface. Then, the server sends a
response back to the client by inverting the source and destination IP addresses from the
original packet received. This way, the server can respond directly to the client.

The fact that the server can respond directly to the client makes it possible to have a small
bandwidth network for incoming traffic, such as Ethernet or token-ring, and a large
bandwidth network for outgoing traffic, such as Asynchronous Transfer Mode (ATM) or
Fiber Distributed Data Interface (FDDI).

10.3.2. ND Component

The three components that make up the Network Dispatcher (ND) are the Dispatcher, ISS
and CBR. ND provides the flexibility to use these components separately or together.

Dispatcher Overview

The Dispatcher component does not use a DNS for load balancing. It balances traffic among
the servers through a unique combination of load balancing and management software. The
Dispatcher can also detect a failed server and forward traffic around it.

All client requests sent to the Dispatcher server are directed to the TCP server selected by the
Dispatcher as optimal according to certain dynamically set weights. The values for those
weights can either be left as default for changed during the configuration process. The
Dispatcher has two important features:

• The TCP server sends a response back to the client without any involvement of the
Dispatcher

• This configuration does not require any changes on the TCP servers to communicate with
the Dispatcher

With the Dispatcher, many individual servers can be linked into what appears to be a single,
virtual server. The site thus appears as a single IP address to the world. Dispatcher functions
independently from a DNS in that all requests are sent to the IP address of the Dispatcher
server.

Dispatcher High Availability

The Dispatcher offers a built-in high availability feature. Dispatcher high availability involves
the use of a second Dispatcher machine that monitors the main, or primary, machine and
stands by to take over the task of load balancing should the primary machine fail at any time.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 103

Interactive Session Support (ISS) Overview

The ISS can be used with or without a DNS name server. If ISS is used for load balancing, a
DNS server is required. This can either be an actual DNS server or, a separate sub-domain for
a new name server, a replacement name server provided by ISS. Using this approach, ISS
runs on a DNS machine. A client submits a request for resolution of the DNS name for an
ISS-associated service, which has been set up by an administrator. ISS then resolves the name
to the IP address of a server in the cell, and forwards this IP address to the client. ISS does not
require a DNS server to collect server load information.

The ISS monitor collects server load information from the ISS agents running on the
individual servers and forwards it to the Dispatcher. The Dispatcher uses this load
information, along with other sources of information, to perform load balancing.

ISS periodically monitors the level of activity on a group of servers and detects which server
is the least heavily loaded. It can also detect a failed server and forward traffic around it.

Once every monitoring period, ISS ensures that the information used by the DNS server or
the Dispatcher accurately reflects the load on the servers. The load is a measure of how hard
each server is working. The system administrator controls both the type of measurement
used to measure the load and the length of the load-monitoring period, taking into account
such factors as frequency of access, the total number of users, and types of access (e.g. short
queries, long-running queries, or central processing unit (CPU) intensive loads).

ISS High Availability

ISS supports high availability. This is accomplished by having all the nodes working together
to eliminate any single point of failure. In case of a machine failure, a new monitor is
automatically elected to take over.

Content-Based Routing Overview

CBR relies on WTE, a caching proxy server, to be installed on the same machine as CBR.
WTE allows the manipulation of the caching details for faster Web document retrieval with
low network bandwidth requirements. CBR, along with WTE, filters Web page content using
specified rule types.

CBR provides the ability to specify a set of servers that should handle a request based on
regular expression matching the content of the request. CBR also allows for multiple servers
to be specified for each type of request. The requests can be load balanced for optimal client
response. CBR can detect when one server in a set has failed, and stop routing requests to
that server. The load-balancing algorithm used by the CBR component is identical to the
proven algorithm used by the Dispatcher component.

When the WTE proxy receives a request, it is checked against the rules that have been
defined in the CBR component. If a match is found, then one of the servers associated with
that rule is chosen to handle the request. WTE then performs its normal processing to proxy
the request to the chosen server. CBR has the same functions as the Dispatcher with the

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 104

exception of high availability, subagent, wide area network support, and some configuration
commands. CBR can only function as part of WTE. WTE must be running before any CBR
configuration can be performed.

The initial release of the IA does not utilize CBR and does not require WTE.

10.3.3. Dispatcher Functional Components

The Dispatcher consists of three main functions:

Executor - This function supports port-based routing of TCP and UDP connections to servers
based on the type of request received (e.g. HTTP, FTP or SSL). This module always runs
when the Dispatcher function is being used.

Manager - This function sets weights used by the Executor based on internal counters in the
Executor itself and feedback from the Advisors and ISS monitoring (if ISS is used as a
monitoring tool). Each unit of information given to the Manager by the Advisors, ISS and
Executor has a relative importance, so more importance to one unit of information can be
given over the others, or totally ignore one or more units of information. Using the Manager
is optional, but if the Manager is not used, load balancing is performed using weighted
round robin scheduling based on the current server weights.

Advisors - Advisors send requests to the TCP servers to measure actual client response time
for a particular protocol. These results are then fed to the Manager to adjust the load
balancing weights. Currently, there are Advisors available for HTTP, FTP, SSL, SMTP,
NNTP, POP3 and Telnet. Three new Advisors have also been added: ping, WTE, and
workload management (WLM).

10.4. Web Server

The Web Server component accepts HTTP URL connection requests from the Web Browser
components. The Load Balancing component directs URL requests to a Web Server based
upon workload and Web Server availability.

The Web Server determines whether the URL denotes content that is static or dynamic. Static
content may already be available to the Web Server within a cache and is immediately
returned. Dynamic and non-cached static content is transferred to an Application Server
associated with the appropriate application domain. Static content is then retrieved and
returned and dynamic content is assembled and returned.

The Web Server and Application Server URL transfer is managed by the Servlet Redirector.
The Servlet Redirector manages the available Application Servers within the appropriate
domain and preserves sessions. The Web Server component communicates to the
Application Server component using the Remote Method Invocation (RMI) protocol. The
transport mechanism is the Internet Inter-Orb Protocol (IIOP).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 105

The Servlet Redirector may be installed in a Thin or Thick configuration. The Thin Servlet
Redirector configuration provides the most efficient solution but does not allow for dynamic
administration. The Thick Servlet Redirector configuration provides the least efficient
solution but does permit for dynamic administration. The SFA solution requires the Thick
Servlet Redirector configuration.

10.5. Application Server

The Application Server component is a functional extension of the Web Server component
and is implemented with IBM WebSphere Application Server (WAS). It provides the
technology platform and contains the components to support access to both public and user
specific information by users employing Web browser technology. For the latter, the node
provides robust services to allow users to communicate with shared applications and
databases. In this way it acts as an interface to business functions.

This component is within the enterprise network for security reasons. In most cases, access to
this server would be in secure mode, using services such as SSL or Secure IP (IPSec).

In the simplest design, this component manages hypermedia documents and diverse
application functions. For more complex applications or those demanding stronger security
it is recommended that the application be deployed on a separate application server node.

Data that may be contained on the node include:

• HTML text pages, images, and multimedia content to be downloaded to the client
browser

• Java Server Pages

IBM WAS extends the functionality of the IBM HTTP Server. WAS enables Web transactions
and interactions with a robust deployment environment for SFA applications. It provides a
portable Java-based Web application deployment platform focused on supporting and
executing servlets, JavaBeans, and JSP files.

In particular, WAS provides:

• Support for JavaServer Pages, including:

q Support for specifications 0.91 and 1.0
q Extended tagging support for queries and connection management
q An Extensible Markup Language (XML)-compliant document type definition (DTD)

for JSPs
• Support for the Java Servlet API 2.1 specification including automatic user session and

user state management

• High speed pooled database access using Java Database Connectivity (JDBC) for DB2
Universal Database and Oracle 8i

• XML server tools, including a parser and data transformation tools

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 106

• A Website analysis tool for developing traffic measurements to help improve the
performance and effectiveness of your Websites

• Machine translation for dynamic language translation of Web page content

• Tivol Ready modules

• Additional integration with IBM VisualAge for Java to help reduce development time by
allowing developers to remotely test and debug Web-based applications

• Full support for the Enterprise JavaBeans (EJB) 1.0 specification

• Deployment support for EJBs, Java servlets and JSPs with performance and scale
improvements , including:

q Applet-level partitioning

q Load balancing

q Enhanced support for distributed transactions and transaction processing

q Improved management and security controls, including:
§ User and group level setup

§ Method level policy and control

• Common Object Request Broker Architecture (CORBA) support, providing both bean-
managed and container-managed persistence

• Full distributed object and business process integration capabilities

• IBM’s world-class transactional application environment integration (from TXSeries)

• Full support for the EJB 1.0 specification

• Complete object distribution and persistence (from CB)

• Support for MQSeries

• Complete component backup and restore support

• XML-based team development functions

• Integrated Encina application development kit

IBM WebSphere Application Server Enterprise Edition Product Overview

IBM WebSphere Application Server (WAS) Enterprise Edition (EE) provides the following
basic capabilities and services:

• Supports enterprise-capable e-business initiatives from Web self-service to business
integration to e-commerce

• Meets strict enterprise requirements for security, performance, scalability and
configurability with open, standards-based technology like interoperable CORBA and
EJB.

• Offers transactional integrity across multiple databases and other existing back-end
transaction environments

• Enables integration of existing IT applications and resources through operational reuse
with new business applications composed from existing ones

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 107

• Supports distributed object computing through a scalable, manageable runtime
environment for developing and deploying distributed, component-based applications

WAS EE provides server software capable of handling high-volume, Web-based transaction
processing. It enables migration of SFA business processes to the Web and positions the SFA
IT infrastructure for future application growth.

WAS EE enables Web interactions while integrating with legacy SFA enterprise systems.
Offering the highest levels of security, performance, scalability and availability, WAS EE
supports distributed applications with efficient mainframe interoperability. IT supports
development, deployment and management of enterprise-wide high performance business
applications.

WAS EE supports and executes Java servlets, JavaBeans, JSP and EJB while interacting with
the enterprise databases, Legacy processing systems and other SFA applications in producing
dynamic Web content.

WAS EE builds Websites capable of handling advanced, sophisticated applications with
features that include:

• Complete Java support including a server for applications built to the EJB specification
for server-side component applications.

• An IBM HTTP Server, based on the Apache Web server, plus support for the other major
HTTP Web servers.

• Performance and scaling attributes with support for bean-managed and container-
managed persistence, providing relational database transaction management and
monitoring. Container management and persistent storage (with the DB2 Universal
Database) help provide a high-performance transactional environment using servlets,
EJB, CORBA C++ and Java distributed objects.

• Tivoli -ready modules that can be managed by Tivoli-based tools.

• Site analysis tools to provide valuable information about SFA customers and the
effectiveness of the Web-enabled SFA applications. Analysis results can be used to help
improve site content, manage site integrity, analyze visitor behavior and better
understand Website usage. With a rich set of analysis features and customizable options,
the site analysis tools help maximize the return on the SFA Website investment.

• Automated machine translation features included IBM HTTP Server, providing “on the
fly” language translation. Machine-based translation automatically translates the textual
content of Web pages without human intervention, reducing the time and expense
associated with human-based translation efforts.

WAS EE contains all of the products found in the Advanced Edition and adds the following
major product components:

• CB is an enterprise solution for distributed computing, providing a scalable, manageable
run time for developing and deploying distributed component-based solutions. It is a
complete and integrated implementation of the open standards contained in the Object
Management Group’s (OMG) CORBA. In addition, CB contains a separate

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 108

implementation of the EJB Specification, which can be used with or instead of the
implementation contained in the Advanced Edition.

• TXSeries, which contains two middleware packages, Customer Information Control
System (CICS) and Encina, that support and simplify the creation of transactional
applications that can span multiple platforms in diverse and complex networks. In
addition to offering cross-enterprise integration, TXSeries applications provide high
levels of scalability, availability, integrity, longevity, and security. WAS EE contains a
complete tool set for building applications.

The next two sections examine the components of WAS EE and explains what each of these
components does. The remainder of this section explains some of the major underlying
environments and services on which WAS EE runs. It also briefly discusses some of the other
products that are licensed for use with WAS EE.

The WAS EE relies on one or more of the following services to handle low-level tasks such as
security, naming, and remote procedure calls:

• The OMG Distributed Computing Environment (DCE).

• The OMG CORBA.

• Microsoft Corporation’s Component Object Model (COM).

• WAS also contains an implementation of the EJB Specification (and related Java
specifications) that is built into the CB product.

DCE enables distributed transaction processing environments using CB or TXSeries to run
seamlessly across machines that differ in hardware, operating system, network transport,
and application software. It is utilized internally as a system resource and is not visible in
scope beyond IBM CB. The DCE deployment is specific to IBM CB and does not require
installation configuration.

The DCE layer extends the basic operating systems of the separate machines to provide a
common infrastructure for distributed computing. By using the standard interfaces provided
by DCE, applications can operate within and be ported to other DCE platforms. The
following sections describe the DCE services used by WAS EE.

Remote Procedure Call (RPC)

At the core of DCE support is the remote procedure call (RPC). RPCs provide a form of
network-transparent communication between processes in a distributed system. Processes
use RPCs to communicate in exactly the same way regardless of whether they are on the
same machine or different machines in an administrative unit known as a cell. The DCE
Security Service can be used to authenticate RPCs. Authenticated RPCs can be checked for
tampering and can be encrypted for privacy. DCE uses multithreading to enable a client to
have multiple concurrent RPC conversations with servers and to enable a server to handle
many concurrent client requests.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 109

Cell Directory Service (CDS)

The cell directory service (CDS) provides a namespace within which network resources can
be accessed by name only. Applications do not need to know the addresses of resources.
(Typical network resources are servers, users, files, disks, or print queues.) Further, if a
resource is moved, it can still be located by the same name; application code does not need to
be changed. The CDS Server manages a database, called a clearinghouse, which contains the
names and attributes (including locations) of network resources in the DCE cell. When a
request is made for a network resource, the CDS Server dynamically locates the resource. The
DCE Directory Service also supports a global name service for identifying resources outside a
cell.

DCE Security Service

The DCE Security Service provides secure communications and controlled access to network
resources in a DCE cell. It verifies the identity of DCE principals (users, servers, and DCE-
enabled clients) and allows them to access only the network resources that they are
authorized to use. The DCE security service does the following:

• Manages a central source of security information in the cell’s security database.

• Validates the identity of interactive principals, such as users, by enabling them to log into
DCE. This is known as establishing a login context.

• Grants tickets to principals and services so their communications are secure.

• Certifies the credentials of principals to control principals’ access rights to resources.

• Validates the identity of non-interactive principals, such as CICS regions, by enabling
them to perform the equivalent of an interactive user login. In this way, they can establish
their own login context rather than running under the identity of the principal that
started them.

• Controls the authorization that principals have to network resources in the DCE cell.
Each object in the DCE cell can have an associated Access Control List (ACL) that
specifies which operations can be performed by which users. ACLs can be associated
with files, directories, and registry objects, and can be implemented by arbitrary
applications to control access to their internal objects.

The DCE Security Service is implemented as a security server, which maintains a store of
security information about network resources in its security database (also known as the
DCE registry database).

Distributed Time Service (DTS)

To compensate for natural drifts in system clocks, the DCE distributed time service (DTS)
ensures that all system clocks of the servers in a DCE cell are synchronized. This is especially
important where servers are in different time zones. A time service is also essential to ensure
the reliable operation of authentication and authorization services.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 110

IBM WebSphere Transactional Integrity

WAS EE enables scalable, distributed transaction systems with security, reliability,
availability and data integrity. The transactional features of WAS EE are offered in
traditional procedural (CICS, Encina) and component-based (CORBA, EJB) programming
models and related transaction processing (TP) monitors. It includes connectivity through a
suite of server and connectivity options, including:

• CICS, CORBA and Encina clients for client connectivity across differing platforms.

• CICS Transaction Gateway and Transarc DE-Light Client and Gateway for integration
between Java applets or servlets executing business logic and CICS or Encina
applications managing resources in the transaction monitor. The CICS Transaction
Gateway also provides a browser-enabled client for accessing 3270-based applications
through a common Web browser.

• MQSeries for business quality messaging to integrate scalable distributed heterogeneous
applications. MQSeries servers and clients enable CICS and Encina servers to
communicate with each other through asynchronous messaging and queuing, and
enable integration with other stand-alone MQSeries-based applications.

• CB Application Adapters for access to DB2 Universal Database, Oracle, CICS,
Information Management System (IMS) or MQSeries-based applications. Manage object
technology.

WAS EE provides a scalable runtime environment for developing and deploying distributed
component-based solutions—including Enterprise JavaBeans. The component features of
WAS EE allow networked applications to use, coordinate, store, translate and sort
information from disparate existing or new applications and back-end systems. Its features
include:

• A programming model that allows data access to be partitioned from business logic

• A CORBA 2.0 compliant ORB that uses the widely accepted IIOP standard to
communicate with other complying ORBs

• An application runtime environment for the integration and management of object
services

• Management of distributed application interactions with networked computing
hardware and software resources (for monitoring, resource allocation, unit of work)

• Support for Web (Java) clients, traditional CORBA clients, ActiveX clients and an ever-
increasing number of nontraditional clients, including kiosks, ATMs and others

• Multi-tier visual development tools for the major object-oriented programming
languages

Application Server Architecture

The IA Runtime Topology is based on the Enterprise Solution Structure (ESS) Thin Client
Transactional Pattern and is a representative solution for the SFA pattern. The pattern
represents a starting point for extending business to the Web. In the initial release, there is no

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 111

interaction with legacy back-end systems (and Web pages are served by a single Web server).
In the subsequent release, there are connections to legacy back-end systems.

There are several options to be considered when determining a runtime topology. Some of
these options have implications on the runtime performance of the application. Other
options will determine whether or not the application will have failover capabilities. Yet
another option will allow for a secure connection to WAS EE.

The topology options are discussed in the following sub-sections, each describing advantages
and disadvantages. The options appear in no particular order.

Separation of Web Servers from Application Servers

Under certain circumstances, you will have to separate the Web Server component from the
Application Server component. This may be necessary when you want to put the
Application Server behind a DMZ so it is in a secure environment. The corresponding Web
Server can be placed inside the DMZ behind a firewall. The separation of the servers may
also be necessary when you have a high volume site with limited business logic. In this case,
there is no need to install an Application Server with each of the Web Servers.

This separation of the Web Server from the Application Server is done by means of the
servlet redirector. The redirector is a stripped down version of the WAS EE that forwards
requests to a dedicated server. There are two version of the redirector available, the Thick
Servlet Redirector and the Thin Servlet Redirector. The Thick Redirector is required for the
initial release.

Thick Servlet Redirector

The thick redirector runs as part of the administrative server. It has therefore the overhead of
requiring the administrative server’s infrastructure, e.g., the database. The advantage of the
thick redirector is that it can be configured and managed using the WebSphere
Administrative Console from either the redirector’s or application server’s node. Also, the
thick redirector is capable to redirect to secured resources, whereas the thin redirector can not
do this.

Thin Servlet Redirector

The thin redirector does not require the administrative server’s infrastructure and does
therefore not suffer from any overhead. It is especially suitable when you have limited
resources or do not want to expose any information in the database. Its disadvantage is that
it cannot be configured and managed using the Administrative Console. All configuration is
done by means of scripts that need to be executed on a regular basis. This means that the
redirector can be out of sync whenever the Application Server has changed and the changes
have not been propagated to the Web Servers. Also, the thin redirector can not redirect to
secured resources, whereas the thick redirector can do this. It depends on your requirements
as to which version is a feasible alternative.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 112

If access to secured resources is not an issue, either one can be used to separate the Web
Server from the application Server. If, however, resources are secured, then only the thick
redirector is an option.

Since the requests to the actual Application Server need to be forwarded, there is a slight
performance degradation to be expected. In addition, a firewall needs to be configured. But
this firewall delivers additional security.

The Number Of Web Servers

The number of Web Servers is crucial when it comes to serving high volume sites. This is
because each Web Server can serve only a limited amount of clients at the same time. As
soon this limit is reached, additional users who want to access that site will receive error
messages that the site cannot be reached. But this information is incorrect because the Web
Server is connected. It just cannot serve the requests.

To address this performance issue additional Web Servers may be installed. Each of these
Web Servers will be connected to the corresponding Application Server. The number of
Application Servers can be the same as the number of Web Servers or it can be smaller, i.e.,
some Application Servers will be connected to more than just one Web Server. However, a
Web Server can connect to only one Application Server.

The ability to add additional Web Servers when needed implements, horizontal scaling. It
also increases the site’s availability.

The Number Of Application Servers

Another means to increase the availability of a site is to increase the number of Application
Servers that are installed. Increasing the number of Application Servers increases the failover
capabilities as well as the performance of the application. This is particularly the case when
the business logic is implemented in the Application Servers and little or no business logic is
implemented in the backend systems.

Increasing the number of application servers does not necessarily mean that the overall
throughput will be increased as well. The throughput will not increase if the backend
systems have reached their limits. Overall, it is highly application-dependent as to whether or
not a performance improvement can be achieved by introducing additional Application
Servers.

Clones Running On Application Servers

In order to increase the vertical scalability of an Application Server, the number of processors
installed on that particular server can be increased. Each of these processors can then execute
in parallel. However, a performance improvement is only possible if either the software or
the operating system can make use of these additional resources.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 113

The WAS leverages additional processors by means of “cloning” of applications. Cloning
means that a given application is duplicated such that the clients cannot distinguish between
the clones. In addition, each WAS is running on its own Java Virtual Machine (JVM).

The Application Server balances the workload of the clones running on a server
automatically. Thus, no administration is required to manage machine utilization.

There are circumstances where cloning is desirable even if there is only one processor
installed. This can be the case if there is an application that is spending most of its time
waiting for some resources. During this time additional requests can be served by the
application clones. Also, if automatic tasks like Garbage Collection take too long to complete,
cloning may prove a viable alternative on a single-processor machine.

In addition to all the before mentioned advantages, cloning also increases the availability of a
particular application as well as the failover capability or if any of the clones fail, the other
clones take over the workload. Overall, it is application-dependent as to whether or not a
performance improvement can be achieved by cloning of applications.

As with all alternatives there are also disadvantages to consider:

• If you do not require session affinity and want all session-related information to be
transparent to the users, there is a performance impact because all session information
needs to be saved and retrieved from a database.

• If your application assumes that it is running on a dedicated machine (even on some
dedicated JVM), cloning will not be an issue for you because it cannot be determined a
priori on which machine you application will execute the next time a request is served.

10.6. Component Broker

The Component Broker component is the IBM ComponentBroker COTS product that
implements CORBA. This component provides object-based functionality to the Application
Server component. An object-based capability provides a standard model for object state and
behavior accessible through object methods.

CB is an enterprise solution for distributed computing, providing a scalable, manageable
environment for developing and deploying distributed component-based solutions. It is an
integrated implementations of the open standards contained in the OMG CORBA initiative.
Many of the low-level details of the CORBA interface are hidden by the CB’s easy-to-use
framework.

Primarily, CB is an object server. It comes with a development environment that is optimized
for creating business objects that run in the CB server. This server consists of both a run-time
package called the CB Connector (CBConnector) and a development environment called
VisualAge Component Development for WAS V3.0 Enterprise Edition (CB Tools). The run-
time package provides a server in which business object components run and are managed
through a set of management tools.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 114

The CB run-time environment supports the execution of C++ and Java-based business logic
that follows the CORBA model or the model of the EJB specification from Sun Microsystems.
The EJB specification provides a portable, platform-independent reusable component
architecture. These components run in a robust multi-threaded server that provides easy
access to a wide variety of services and capabilities. Key object services provided include:

• Data Cache and Prefetch

• Concurrency Control

• Event

• Externalization

• Object Identity

• LifeCycle

• Naming

• Query

• Security

• Transaction

These services are available in an integrated fashion based on the OMG model and the CB
Managed Object Framework (MOFW). This framework exists as a set of configurable and
extensible interfaces that are adapted to meet specific requirements.

Application adaptors extend and specialize these interfaces. Application adaptors provide a
home and container for Managed Objects, similar to an object-oriented database.
Combinations of these object services are called qualities-of-service and are acquired
according to the containers in which the objects run. Developers build the business logic, and
the administrators make decisions about the qualities-of-service to be provided for any given
installation of a business object.

CB contains a CORBA–2.0-compliant ORB that is encapsulated by the MOFW and the object
services provided by CB. The ORB facilitates interoperability with other IIOP servers and
with clients. CB supports client access by using the IIOP directly or by using RMI over IIOP
(RMI/IIOP).

Many business object abstractions depend on existing resources. CB supports the separation
of the business logic from the state data in the base programming model. This separation is
managed and controlled by the CB run time. CB provides access to resources on DB2, Oracle,
CICS, IMS, and MQSeries. Business objects that have data objects backed by these resource
managers can participate in distributed transactions. CB acts as an external commit
coordinator for all of these resource managers through the implementation of the CORBA
Object Transaction Service (OTS).

System Management tools enable administrators to control the distributed-object computing
environment. These tools enable the modeling of the deployment configuration and then the
actual management of the abstractions that are introduced by the distributed-object
paradigm. Administrators can enlarge configurations by adding servers and server groups.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 115

They can alter qualities-of-service through container management, and they can scale up
environments by adding additional computing resources into the object server pool.

Development of applications that run on CB can be done in one of two ways. First, CB
provides a complete set of tools and support for building CORBA-based applications.
Second, CB tools enable the deployment of enterprise beans that were created by using other
tools, such as VisualAge for Java. A CORBA-based application is developed by using the
Object Builder tools that come with CB. Designs for systems can be imported from the
Rational Rose ® visual-modeling tool. After these designs are imported into Object Builder,
the template for the implementation is available for use.

Developers merely fill in the business logic in prescribed places within the framework. Object
Builder takes care of the rest. It generates the code, makefiles, and application configuration
information necessary to test the application on a CB server. Object Builder also supports
large-scale team development. Object Builder facilitates transformation of large-system object
architecture into separate pieces that can be worked on by many teams. Object Builder then
facilitates linking these models back together and building an integrated solution.

Object Builder also serves as the deployment tool for enterprise beans that run in the CB run
time. Object Builder facilitates the mapping of entity beans with Container-Managed
Persistence (CMP) to databases and existing applications. Distributed object applications that
leverage both enterprise beans and CORBA-based objects are easily constructed, tested, and
deployed using the Object Builder tool and the CB run time.

CB is also an EJB server environment. It supports deploying and running components based
on the EJB 1.0 Specification. It provides the qualities-of-service prescribed by the EJB
specification and allows developers to build enterprise application business objects using the
EJB programming model. Support for CMP allows mapping to a wide variety of resource
managers. This support is based on the same technology used to map CORBA-based
business objects to existing resource managers. Enterprise beans also benefit from the same
implementations of object services that are available to CORBA-based business objects.

Component Broker Application Architecture

CB applications are designed as three-tiered applications. The content of each tier is
summarized below:

• First tier—A programming model that allows client applications to be implemented in
C++, Java, or Visual Basic, and allows clients to access components on the server through
a CORBA-compliant ORB.

• Middle tier—A programming model with full tools support, and a run-time
environment, in which the components (CORBA-based business objects or enterprise
beans) are deployed.

• Third tier—Application adaptors on the middle tier allow components to access data in
various resource managers, including DB2, Oracle, CICS, and IMS.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 116

Three-tiered applications are reliable, extensible, and scalable. The MOFW makes the
development of such applications possible. The framework is supported by a suite of
development tools, which allow you to make use of the framework to create components
without going into details of inheritance and framework implementation.

CB provides components that are deployed in the middle tier, connecting the first tier (client)
with the third tier (databases and other resources). The components are implemented as
CORBA-based business objects or enterprise beans. They allow application logic to run on
high-powered servers, and insulate client applications from the complexities of the various
resource managers. The client works with the components through a CORBA-compliant
ORB, and the components work with the resource managers.

In combination with existing resource managers, CB functions as an object server by
providing an application environment that lets clients access back-end-systems through
object-oriented middleware. This system provides an infrastructure scalable enough to
include everything from desktops to the largest cluster of mainframes. CB is platform-
independent and allows design, development, and deployment of distributed object-oriented
server applications for mission-critical solutions.

A CB server process provides a complete execution environment and partial implementation
for managed objects. Method requests are routed from the ORB to the server. The server, in
conjunction with the container and adaptor, ensures that method requests are dispatched on
a properly prepared object. This means that the object may have to be activated in memory,
its state data may need to be refreshed, or it may need other services attached to the request
before execution. Some examples of additional services provided to managed objects follow:

• Persistence, transactions, and security

• Workload management and availability management over multiple servers

• Object-oriented access to existing databases and applications

CB enables operational reuse. Operational reuse focuses on reengineering existing software
so it can be used as building blocks for new applications. The CB infrastructure enables the
construction of these new building blocks. These building blocks achieve operational reuse
and present an abstraction layer that can in turn be reused to build many new business
applications.

CB clients can be C++ programs, Java applets, or Visual Basic programs that a user interacts
with directly, or they can consist of Web Servers or Application Servers that have their own
clients. A typical client application consists of view objects, which provide the end-user
interface interactions and a mapping to server components, and client objects, which
implement business logic specific to the client and provide integration with other desktop
applications, such as spreadsheets and document processors. Anything that can send an IIOP
request is a potential client.

The server can have components on one machine or on many different machines. This layer
includes programs written by developers as well as CB components that make up the
infrastructure. The third tier can be running on many different physical hosts, and can be

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 117

using application logic that itself provides additional physical tiers. In the first tier, clients
access CB server objects through proxy objects.

Middle-tier architecture

The middle tier of the three-tier architecture consists of components implemented as
CORBA-based business objects and enterprise beans. The architecture for the middle tier of a
CB application has three layers, with three corresponding kinds of components: persistent
components, composite components, and application components.

Persistent components are abstractions that map to existing data or procedural programs.
While these components can have dependencies on other persistent components (one-to-one
and one-to-many relationships), they are generally fine grained enough to be highly reusable.

Composite components represent new abstractions that are easily usable and understandable
by client programmers and by application component programmers. These compositions
often represent an aggregation of persistent components. Methods of the composite
component typically delegate or bridge down to methods on the persistent components,
which the component aggregates. These mappings can be one-to-one (mapping directly to a
method of an aggregated component) or one-to-many (executing methods on each of the
aggregated components). While composite components are not as reusable as persistent
components, they can be more valuable when they are reused, because they represent larger
portions of the application.

Application components focus on business logic and usage of other components. This is the
layer that is accessed by client applications. Application components implement processes or
tasks, as defined by object-oriented analysis and design. They implement any business logic
that is not properly modeled as a method on other, individual components. Application
components also provide the mechanism for moving application logic from the client to the
server. Generally, application components represent the parts of the application architecture
that are specific to an application, such as certain business processes or tasks. By separating
out these elements, which are less suitable for reuse, leave the rest of the application
(composite components and persistent components) as reusable as possible.

When extending an existing CB application, or creating a new application that uses the same
data, create new application components to provide application-specific business logic.
However, it is possible to reuse the persistent components and potentially the composite
components. The persistent components need to change only if the underlying data store
changes. The composite components need to change only if the definition of the aggregation
changes. Even when change is necessary, the underlying component architecture allows the
data store to change without affecting reuse of a component’s behavior or interface.

Component Architecture

Each component consists of a set of objects, which work together and are managed by an
application adapter. The component acts as a single object, even though it is implemented as
a set of objects on the server. The client accesses the component to perform business

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 118

functions. All CB server objects are derived from the MOFW, which provides default code
that allows the set of objects to work together and behave as a single entity. Components are
factored into multiple objects to make them more maintainable. A component mapping to a
data store is kept in a separate object, so if the mapping changes or a different data store is
chosen, only the separate object needs to be updated. Application components and composite
components are made up of three basic objects, along with some helper objects for locating
and creating the component. Persistent components add a fourth basic object, which provides
the code to access resource managers or data stores on the third tier. The main component
objects are:

• Business Objects

• Managed Objects

• Data Objects

• Key and Copy Helpers

• Persistent Objects

Business Objects

Business objects define the interface of the component, in terms of attributes and methods.
The CORBA Interface Definition Language (IDL) is used to define a business object’s
interface. IDL specifies an object’s interfaces, independent of operating system and
programming language.

A business object can be implemented in either C++ or Java. Because the business object is
derived from the Managed Object Framework, the only code needed to provide is the
implementation for any application-specific methods defined. When you create a business
object using CB tools, the framework is extended. Attributes considered as part of the state of
the object can be cached or delegated to the data object.

Data Objects

Data objects manage the persistence of component state information. They provide an
interface for the business object to get and set state data.

A data object isolates its business object from having to:

• Know which of many data stores to use to make its state persistent

• Know how to access the data store

• Manage access to the data store

Managed Objects

Managed objects provide the component with management by an application adapter.
Because this management capability is provided in a separate object, the type of service
provided can be changed without affecting the component interface. Some examples of
managed services are:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 119

• Persistence, transaction, and security

• Workload management and availability management over multiple servers

• Object-oriented access to existing databases and applications

Keys and Copy Helpers

A component key object defines which attributes are to be used to find a particular instance
of the component on the server. The key consists of one or more of the business object
attributes, which must contain enough information to uniquely identify an instance.

A copy helper is an optional object that provides an efficient way for the client application to
create new instances of the component on the server. The copy helper contains the same
attributes as the business object, or a subset of them. Without a copy helper, the client might
need to make many calls to the server for each new instance: one call to create the instance,
and then an additional call to initialize each of the instance’s attributes. With a copy helper,
the client can create a local instance of the copy helper, set values for its attributes, and then
create the server component and initialize its attributes in one call by passing it the copy
helper.

Persistent Objects

A persistent object is an object that provides a mechanism for storing a component’s state in a
data store. Every persistent object has an identifier or a key that is used for locating its
corresponding record within the data store. There are two main kinds of persistent objects:

• Those used for accessing database (DB) data (mapping to a DB schema)

• Those used for accessing procedural data (mapping to a CICS and IMS bean, or
Procedural Adaptor bean).

Component Instantiation and Execution

Each component is instantiated and later located by using a home object. A home object is a
server object that allows clients and other components to locate and create components of a
certain type. Once created, the components live in a container, which acts as an application
adapter for the component, providing management services to the component through its
managed object. When a call is made to a persistent component get method (to retrieve the
value of an attribute) the component objects work together as follows:

• The managed object accepts the call, and calls its associated container for object services
before passing the call on to the business object

• The business object accepts the call, and either returns the value of the attribute based on
a cached copy of the data or delegates the call to the data object

• The data object accepts the call, and either returns the value of the attribute based on a
cached copy of the data or delegates the call to the persistent object

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 120

Common Object Request Broker Architecture (CORBA)

The OMG created the CORBA specification to facilitate the development of object-oriented
applications across a network. CORBA objects are standard software objects implemented in
any object-oriented programming language. An ORB mediates the transfer of messages
between client programs and objects. When a client program invokes a method on an object,
the ORB intercepts the request and finds an object implementing that method. The ORB
returns the result of the method invocation to the client program. From the programmer’s
point of view, all of the work appears to be done on one computer system.

IIOP enables communications between different ORB implementations. The IIOP is based on
TCP/IP and includes additional message-exchange protocols defined by CORBA.

This section discusses the standard parts of an ORB used in WAS EE.

CORBA IDL

One of the most important parts of the CORBA specification is the IDL. This object-oriented
language enables programmers to create interfaces between components written in different
programming languages, so that objects can be used by remote clients as if the objects were
local to the client. This interaction between language-disparate components provides great
flexibility to developers working in environments with many platforms and development
tools.

The component interface is created in a CORBA IDL file, which is then compiled by using the
CORBA IDL compiler. This produces most of the stub and skeleton files required for creating
a distributed application.

Remote calls

CORBA remote calls enable communications between client proxy objects and server-side
objects. CORBA servers export implementation objects to which client proxy objects bind in
order to obtain a service. Objects that participate in transactions or make transactional
requests on other objects are called transactional objects.

A remote call in CORBA occurs when a client creates a proxy object and uses that object to
invoke a method on a corresponding implementation object at the server. This remote call is
similar to an RPC.

Naming and Binding

The CORBA services specification details the manner in which a naming service must be
implemented; however, the specification allows for differences between ORBs. Whether a
particular ORB contains a naming service is left to the discretion of the ORB implementer.
Both Orbix and the CB ORB contain a naming service.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 121

ORBs that do not implement a naming service must implement some way of enabling a client
to bind to a server. For example, the Orbix _bind function can be used instead of the Orbix
Naming Service.

Component Object Model (COM)

Microsoft COM is a model for developing applications composed of individual components
that can be transparently and separately upgraded. A COM component can be used to create
an application in any language. Once instantiated in a client, a COM object acts as a proxy for
the client, marshaling and unmarshaling data to contact a server and returning data and
status information back to the client. Both TXSeries and CB provide COM functionality.

10.7. Content Management

The Content Management component is implemented with Interwoven TeamSite and
Interwoven TeamSite Templating. The SFA application developers and content authors to
manage the SFA Internet and Intranet Website use this COTS product.

The Interwoven TeamSite COTS product enables Web developers to work in an environment
that supports versioning of file system and database assets. Control of the assets is
accomplished by using an easy-to-use workflow engine. The product utilizes branch
structures to organize workgroups and enforce security, provides developers with their own
Workarea or sandbox to develop within, and will store all versions of the Website.

The TeamSite Templating COTS product is an add-on package that enables decentralized
content contribution, even in environments with centralized control of the overall look and
feel. The product:

• Give users the ability to submit content that can be stored directly in a database or a file,
while preserving the integrity of Web page layout site architecture,

• Ability to create dynamic Websites. Common content elements can be combined with
data stored in a database or file system to deliver dynamic Web pages,

• Enables content reuse by providing the ability to include individual content elements in
any number of Web pages, and

• Administrators can implement a consistent look and feel across the Website, while
maintaining the flexibility needed to make rapid changes.

The content will be controlled through a workflow engine. Once updates are approved to go
to the test/development machines, the data will be transferred over to the storage area
network (SAN). Viador and WebSphere access the SAN in order to display content through
the browser.

After the Web content has been tested and approved in the development environment, it will
be transferred to a different location on the SAN in production. The production servers will
access the content in the same manor as in development. An external task may be launched
at this time in order to alert Autonomy that content has changed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 122

The TeamSite Intelligent File System is composed of:

• The TeamSite server and kernel

• The TeamSite backing store of files and metadata

• A suite of command-line tools

• The TeamSite CGI

• Proxy servers for access through the TeamSite browser-based graphical user interface
(GUI)

• File system mounts for access through the file system interface

The Intelligent File System is the core of the TeamSite system, where detailed information
about the Website, the Web assets, Web asset metadata, the production process and the users
is stored. The Intelligent File System collects and maintains metadata on TeamSite files,
directories, and areas, and allows TeamSite to process and present information according to
who is asking for the information, and under what conditions. By using an object-oriented
design within a file system architecture, TeamSite combines extensive meta-data tagging
with open access and file system performance for Web content.

The following diagram illustrates the elements of the SFA TeamSite deployment.

/ .iwmnt
Filesystem

mount

iwcgi

TeamSite
Backing Store

TeamSite
Server

(iwserver)

TeamSite
Kernel
(wfs)

Command
Line Tools

/ .iwmnt
Filesystem

mount

Web
Server

(port 80)
iwproxy
Workarea

Virtualization
(port 1080)

Command
Line

Browsers

NFS Mount
Samba

TeamSite Server Client Computer

LaunchPad

RPC

NFS
iwdiff
iwmerge

SmartContext
QA

Figure 27 – TeamSite Server

The client computer connects to the TeamSite server in several ways. Requests from the
browsers or LaunchPad are routed through the standard TeamSite proxy server, which

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 123

allows consistent views of TeamSite areas. The double proxy server redirects hard-coded
links within the Website. Requests through the File Storage component (AFS) and
command-line tools, which do not go through the Web Server component, are not routed
through a proxy server.

10.7.1. Private Workareas

With TeamSite, each Web contributor has a private workarea based on the server to develop
and modify Web content. Each workarea contains a virtual copy of the entire Website. This
allows each Web developer to stage and test changes in the context of the entire site without
impacting the Web site or other contributor.

Computer

Computer

Computer

Computer

Server

Server

HTML
Documents

Templates

Articles

Database

Workareas

Staging Area Editions

Intranet
Server

Internet
Server

Figure 28 – TeamSite Workflow

Workflows can follow many different paths, but the one depicted above is the most likely
simplest scenario to demonstrate content management and how it is deployed to the
respective Websites. Web contributors for the SFA Intranet and Internet will place their
content into a Workarea that is created by an administrator. Once the content, for example
an HTML page, is completed, the programmer will submit it to staging. Once in staging it
can go through an approval process before being placed onto the next edition. Editions are
moved onto the actual Websites either during scheduled or event driven processes.

10.7.2. TeamSite Elements

The following sections describe the TeamSite elements. These elements consist of Branches,
Workareas, Staging Areas, and Editions.

Branches

TeamSite provides branches for different paths of development for a Website. Branches can
be related to each other (e.g. alternate language versions of the same Website) or they may be
completely independent. Each branch contains all the content for a Website.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 124

A single branch contains archived copies of the Website as editions, a staging area for content
integration, and individual workareas where users may develop content without disturbing
one another. Branches can also contain sub-branches, so teams may keep alternate paths of
development separate from each other. Content can be easily shared and synchronized
across branches and sub-branches. Users may work on one branch or on several, and the
number of branches on a system is not limited.

Branches facilitate distributed workflow because they allow separate teams to work
independently on different projects. Because all branches are located on the same TeamSite
server, it is easy for one team to incorporate the work of another into their project.

Workareas

Each workarea contains a virtual copy of the entire Website, which may be modified in any
way without affecting the work of other contributors. Users who have access to a workarea
may modify files within that workarea and view their changes within the context of the
entire Website before integrating their work with that of other contributors. Users can lock
files in each workarea, eliminating the possibility of conflicting edits.

All changes that are made to files in a workarea are kept completely separate from other
workareas and the staging area until the user chooses to promote his changes to the staging
area. Within a workarea, users may add, edit, or delete files, or revert to older versions of
files without affecting other users.

Staging Areas

Each branch contains one staging area where contributors incorporate their changes with the
work of others. Users submit files from their workareas to the staging area to integrate their
work with other contributions, and test the integrity of the resulting Website. Because the
staging area is an integrated component of the system, conflicts are easily identified and
different versions of the same file can be merged, rather than overwritten.

Editions

Editions are read-only snapshots of the entire Website, taken at sequential points in its
development. Contributors can create new editions any time they feel their work is well
integrated, or any time they want to create an update to the Website for reference or
deployment. Each edition is a fully functional version of the Website, so the users may see
the development of the Website over time and compare it with current work.

10.7.3. TeamSite Users

The following sections describe the TeamSite users. These users consist of Authors, Editors,
Administrators, and Masters.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 125

Authors

Authors are primary content creators. All work done by Authors goes through an explicit
approval step. They can receive assignments from Editors, which are displayed in To-Do
lists when Authors log in to TeamSite. Authors can access TeamSite from a Web browser.

In order to test work, Authors have full access to the content in their Editors workareas, but
do not need to concern themselves with the larger structure and functionality of TeamSite.
The Author role is appropriate for non-technical users, or for more technical contributors
who do not need access to the TeamSite extended functionality, such as the TeamSite
advanced version management features.

Editors

Editors own workareas. They create and edit content, just as Authors do, but they are
primarily responsible for managing the development taking place within their workareas.
This includes assigning files to Authors and submitting completed content to the staging
area, and it may include publishing editions.

Editors have access to specialized TeamSite content and workflow management functions.
Editors are generally “managerial” users, who primarily supervise the work of Authors, or
self-managing “power” users, who need the TeamSite extended functionality to manage their
own content.

Administrators

Administrators own branches. They have all the abilities of Editors, but they are primarily
responsible for the content and functioning of their branch. Administrators can manage
project workflow by creating new workareas for Editors and groups, and by creating sub-
branches of their own branch to explore separate paths of development.

An Administrator is the supervisor of the project being developed on his branch. The
administrator may be the Webmaster for a particular version of the Website, or a project
manager.

Masters

Master users own the Website. They can perform all the functions of Editors and
Administrators on any branch. The Master user owns the main branch, from which all sub-
branches are created. The Master user is generally involved in the installation of TeamSite,
and can reconfigure TeamSite on a system-wide basis.

10.7.4. TeamSite Templating Model

Developing new templates requires a strict file and directory structure. TeamSite Templating
uses a data storage hierarchy based on data categories and types. The directory structure
supporting this hierarchy resides in the workarea for each TeamSite Templating user. The

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 126

directory structure is illustrated in the following diagram. Items in boxes are directories;
items not in boxes are files.

Workarea

templatedata

tutorials data_cataegory_1 data_category_2 components...
data_type_1 data_type_2

data presentationdatacapture.cfg

content_record_1

content_record_2

pres_tempalte_1.tpl

pres_tempalte_2.tpl

...

... ...
Figure 29 - The templatedata directory is at the highest level in the hierarchy.

Data categories are at the next level in the hierarchy and contain one or more data types. In
addition to residing in this directory structure, data categories and types must also be listed
in the templating.cfg configuration file to be made available to TeamSite Templating. The
component directory that stores component templates is also a subdirectory of templatedata.

Data type directories each contain a datacapture.cfg file and the subdirectories data and
presentation. Details for the entire hierarchy are shown in the following table.

Table 45 – Datacapture.cfg Directory Hierarchy

File or Directory Description

templatedata

Top-level directory containing subdirectories for data
dategories, types, and all associated configuration files.
Residesin the workarea for each user who uses TeamSite
Templating. Can be renamed.

data_category_1

The first major categorization for data on a specific branch.
Named and defined in templating.cfg.

For example: /templatedata/beverages

data_type_2

The first subcategory of data in data_category_1. Named and
defined in templating.cfg.

For example: /templatedata/beverages/tea

Each data type in a given data category has its own
subdirectory.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 127

File or Directory Description

datacapture.cfg

The XML configuration file that defines a data capture
template and drives data capture for a specific data type. As
such, it defines the data type itself

For example: What information the data type will contain,
parameters for what type of data is legal in any input field,
etc.) Specifies the look and fell of the data capture form
displayed in the TeamSite GUI through which a content
contributor enters data.

Each data type must have exactly one datacapture.cfg file.

data

The directory containing all captured data content records for
a given data type. If necessary, you can define and create a
directory tree underneath the data directory. A data directory
can contain zero or more data content records.

content_record_1

The first data content record for a given data type. Each data
content record is an XML file containing formatting
information interspersed with data that was captured from a
content contributor via the TeamSite GUI. A data content
record is named by the content contributor during data entry.

For example:
/templatedata/beverages/tea/data/november_order

presentation
The directory containing all presentation templates for a given
data type. The presentation directory must contain one or
more presentation templates.

pres_template_1.tpl

The first presentation template for a given data type. A data
type can have any number of presentation templates. A single
presentation template is populated by data from zero or one
data content records. A presentation template can have a
name of your choice.

For example:
/templatedata/beverages/tea/presentation/monthly_order.t
pl

components The directory where all component templates are stored.

tutorials Examples showing the use of ix_xml tags.

data_type_2
A second subcategory of data in data_category_1.

For example: /templatedata/beverages/coffee

data_category_2
A second major categorization for data on a specific branch.

For example: /templatedata/food

The TeamSite Templating architecture allows data capture and data presentation to be
configured, executed, and managed separately. The following diagram and sections provide
a high-level overview of this architecture:

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 128

Figure 30 –TeamSite Templating Overview

Data Capture

Content contributors working through the TeamSite GUI have access to the data capture
subsystem. This subsystem lets content contributors select and work through forms defined
by data capture templates to create or edit data content records, which by default are stored
in the TeamSite file system. After data content records are created, they can be displayed via
presentation templates or optionally deployed to a database via DataDeploy.

Data Presentation

After data is captured and stored as data content records, users working through the
TeamSite GUI or from the command line can access the page generation subsystem to
combine a data content record with a presentation template. The end result is a generated
HTML file that displays the data content in a way defined by the presentation template.
Additionally, users can generate an HTML file that obtains data from zero or one data

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 129

content records and from queries to databases. The generated HTML file can optionally be
deployed to a production Web server via OpenDeploy.

10.7.5. Interwoven Production Topology

TeamSite is installed on Sun Enterprise 3500 with Solaris 2.6. The IHS Web Server is installed
with the TeamSite server. The following Interwoven products are deployed.

TeamSite

TeamSite is deployed with sample content which will be used to test and demonstrate proper
installation and configuration. There is a requirement to have a directory iw-store to be in a
separate partition. The iw-store is an Intelligent File System that is composed of:

• TeamSite server and kernel

• TeamSite backing store of files and metadata

• A suite of command-line tools

• TeamSite CGI

• Proxy servers for access through the TeamSite browser-based GUI

• File system mounts for access through the file system interface

The Intelligent File System is the core of the TeamSite system and manages detailed
information about the Website, the Web assets, Web asset metadata, the production process
and the users. The Intelligent File System collects and maintains metadata on TeamSite files,
directories, and areas, and allows TeamSite to process and present information according to
the client that requests the information, and under what conditions. By using an object-
oriented design within the File Storage architecture, TeamSite combines extensive metadata
tagging with open access for Web content.

Templating

TeamSite Templating provides a highly configurable way to capture, edit, and store data
input from content contributors; define the appearance of displayed data; and integrate
captured data with other Interwoven products such as TeamSite Workflow and DataDeploy.
The TeamSite Templating mechanism for capturing data content from content contributors is
separate from the mechanism for defining the appearance of the content when it is displayed.
This architecture allows for unlimited reuse of data after the data is captured and stored. It
supports different appearances and behaviors for the same data content based on how,
when, where, or to whom the data is displayed.

OpenDeploy

The OpenDeploy utility is used to transfer the Schools Portal and associated applications
Website content from the development environment to the production environment. It
supports cross-platform deployment from the development servers to any Solaris or

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 130

Windows NT production servers (and vice versa), as well as allowing Solaris-to-Solaris or
Windows NT-to-Windows NT deployments.

OpenDeploy allows transactional deployments, so that if deployment is interrupted, the SFA
Website content that was originally on the production server will remain intact. OpenDeploy
also allows SFA administration to specify the degree of detail to be included in the
deployment log files from a broad overview of the deployment to detailed information about
each file that was deployed.

OpenDeploy server is installed on the WebSphere and Viador servers. Content will be
transferred to the development machines after the Website content developer has submitted
it. Once the content has been tested on the development environment servers it can then be
deployed from the TeamSite server to the production servers.

DataDeploy

The DataDeploy utility is used to transfer extended attribute data between TeamSite, an
external Structured Query Language (SQL) database (Oracle 8i), and an XML file. For the
TeamSite-to-database scenario, the DataDeploy Database Auto-Synchronization (DAS)
module is used to automate the entire deployment process for TeamSite Templating users.
In this situation, any extended attribute changes resulting from modifying a data content
record via the TeamSite Templating GUI are automatically deployed to a database.

DataDeploy will interface with the Oracle ODS in order to update the database once a user
has entered content through the predefined templates.

How content will be deployed to production

Once content is approved in the staging area it will be copied to a different location on the
SAN for testing. The testing environment will be a duplicate environment of the production
environment. Once testing has completed an approved Editor or Administrator will
promote content to an Edition. OpenDeploy will then copy the new Edition out to the
production environment.

Autonomy Interface

When data is deployed, an external task can be called, and a content file is produced. After
the content file is approved Autonomy would be launched via the script to spider the new
content. Another scenario is to schedule the deploys so that the content is first deployed and
a file written to that will be used by Autonomy to spider that content. Another alternative
approach is to have no connectivity between Autonomy and TeamSite and just let Autonomy
spider all the content.

Oracle Interface

In some cases it may be desirable to have metadata from the templates to be placed into a
database. Since SFA is using a relational database management system (RDBMS) (Oracle)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 131

this can be done through DataDeploy. Whenever a TeamSite-to-database deployment
finishes executing, the end result is an updated table on the destination system. This table
will be either a base table, delta table, or standalone table, depending on what type of update
you instruct DataDeploy to perform (as defined in the configuration file’s <update> section).
Update types are named for the type of table they modify.

The most common sequence of events when deploying from TeamSite to a database is as
follows:

• Generating an initial base table of a staging area or edition

• Generating a delta table for each workarea associated with the staging area or edition

It should be noted that an OpenDeploy server will need to be loaded on all machines that
require content. OpenDeploy utilizes a particular port to another instance of OpenDeploy to
insure data integrity.

The following diagram depicts how the data will flow from the TeamSite server to the
production environment. How often this occurs will be determined by the development
team. It is most likely that it will be a scheduled deployment once or twice a day. Since
TeamSite is installed on a Solaris machine this is accomplished through a cron job. The cron
job will invoke OpenDeploy to do the “copying” of data and possibly any manipulation that
may be needed (for example changing owner and permissions of the files).

Interwoven
Interwoven

TeamSite
(workareas, Staging

area, Editions)
OpenDeploy

deployed
editions

WAS

IHS

pushes dynamic c
ontent

pushes static content

Figure 31 - TeamSite Content Dataflow

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 132

10.7.6. Security

Access to TeamSite is governed by two factors: File permissions and TeamSite access
privileges. File permissions control access to individual files and directories. Password
authentication is used when logging in to TeamSite. However, TeamSite access privileges
govern log in under various roles, and access to branches and workareas. For example, to
edit a file in a workarea, a user must both be able to access that workarea (through TeamSite
access privileges), and have permissions for that file and its parent directory (through
permissions).

When adding a new user, take the following three factors into account:

• Whether the user has access to the server

• The role the user will play in your Website operations

• The portion of the Website the user will be editing

To decide what groups the new user needs to belong to, and which workareas he needs to
access, consider the existing groups and which portions of the Website and which workareas
they can access. Add the new user to the groups that work on the same portion of the
Website that he will be editing, and he will automatically have access to their workareas and
to their Website files. If the new user needs his own workarea, create a private or shared
workarea for him, but make sure that he owns or has group-level access to the files that he
will be editing.

When creating a new workarea, the following needs to be decided:

• What the name of the workarea should be

• Who will need to access the workarea (this can be one person, or one person and a group)

• What portions of the Website the workarea’s to which owner and group should and
should not have access

Set permissions on your files according to the latter consideration. Permissions cannot be set
differently for different workareas. If the permissions for corresponding files are set
differently in different workareas, you will encounter conflicts when you submit files to the
staging area.

It is useful to keep a chart of the Website that shows what users and groups have access to
what sections of the Website.

Comprehensive Security

File Versioning

TeamSite robust file version histories are created transparently and easily accessed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 133

Whole Site Archiving

TeamSite editions are complete copies of the Website created during the course of its ongoing
development and maintenance.

Site Rollback

Site Rollback allows instant recovery of any earlier version of the Website.

Access Control

TeamSite respects the native operating system file and directory permissions necessary to
provide strict access control for enterprise-level security.

LDAP Support

Authentication to the TeamSite system can be controlled via lightweight directory access
protocol (LDAP) v3 integrating TeamSite with corporate security policy.

10.8. Portal

The Portal component is implemented with Viador Portal Suite COTS product. It is used by
SFA application developers to integrate and distribute information and services in a secure,
Web-enabled environment. The product provides the following portal functionality:

• Stringent authentication process for intranet and extranet users

• Pass-through of authentication if it is performed elsewhere

• Links to favorite Websites and other content sites

• Repository for storing portal information and documents

• Channels/Publish/Subscribe model to facilitate distribution of information

• User-customizable GUI

• Repository to host metadata information about files stored on the physical disk system of
the Web server

• Portlets to support registration and integration of third party applications

Viador provides the SFA enterprise information portal framework. This framework delivers
a range of services and supports the development and integration of portlets. Portlets are
component based approach to enterprise information integration.

10.8.1. Single Point Of Access

The Viador Portal provides a single point of access for all corporate data. It is designed to
collect information from a wide variety of heterogeneous data sources into a single
repository. Users can search the repository, or the portal can be configured to alert users
when new, pertinent information is added. Viador also delivers access to unstructured data

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 134

such as Web and documents, spreadsheets, engineering diagrams, and so forth. In addition,
the Portal framework delivers access to corporate data sources, decision support databases,
Internet news content, and enterprise applications.

10.8.2. Corporate Customization

Companies can customize the portal to provide access to a range of applications and data
sources to users. Roles can be defined by the system administrator that can be applied to
categories of users, such as marketing, sales, engineering, manufacturing,
accounting/finance, human resources, customer support, or senior managers. Corporate
customization also includes defining security policies and procedures, and defining how data
will be categorized in the portal.

10.8.3. End User Personalization

Users can personalize their portal interface by selecting from the catalog of data sources and
applications they have access to according to their assigned roles. The personalization
process allows users to quickly locate information they require and filter out information that
is extraneous. This increases productivity by reducing the amount of time wasted locating
and consolidating information situated in a variety of heterogeneous sources.

10.8.4. Viador Portal Architecture

The following diagram illustrates the Viador Portal Architecture.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 135

Web ServerWeb Server

Viador
FTP

Server

Viador Viador
FTPFTP

ServerServer

Viador
Admin
Server

Viador Viador
AdminAdmin
ServerServer

Web ClientWeb ClientWeb Client

Viador Portal ArchitectureViador Portal Architecture

Viador
Server
Services

Viador Viador
Server Server
ServicesServices

Viador Viador
PortletsPortlets

Portal
Services
Portal Portal
ServicesServices

Search
Services
SearchSearch

ServicesServices
Event

Services
EventEvent

ServicesServices
Repository
Services

RepositoryRepository
ServicesServices

Data Access
Services

Data AccessData Access
ServicesServices

Doc Mgmt
Services

Doc MgmtDoc Mgmt
ServicesServices

Authen-
tication

Security Security
ManagementManagement

LDAP
Adapter
LDAP LDAP

AdapterAdapter
Security
Policy

SecuritySecurity
PolicyPolicy

Author-
ization

AuthorAuthor--
izationization HTTPSHTTPSHTTPS TunnelingTunnelingTunneling

Load
Balancing

Load Load
BalancingBalancing

Audit &
Logging
Audit &Audit &
LoggingLogging

Session
Management

SessionSession
ManagementManagement

Connection
Pooling

ConnectionConnection
PoolingPooling

Installer
Services
InstallerInstaller
ServicesServices

License
Management

LicenseLicense
ManagementManagement

Relational
Data sources

Multi
Dimensional
Data sources

Search
Engines

Document
Servers

LDAP
Servers

SQL Ad-hoc
Query

SQL AdSQL Ad--hochoc
QueryQuery ReportingReportingReportingOLAP

Analytics
OLAPOLAP

AnalyticsAnalytics

MailMailMail Server
Admin

Server Server
AdminAdmin

User
Admin
User User
AdminAdmin

File
Upload
File File

UploadUpload

SearchSearchSearch

Custom /Custom /
3rd Party 3rd Party
PortletsPortlets

ApplicationApplicationApplication

ContentContentContent

Custom
Services
Custom Custom
ServicesServices

Etc.Etc.Etc.

Viador
APIs

ViadorViador
APIsAPIs PortletPortletPortletData feedData feedData feed RepositoryRepositoryRepository OLAPOLAPOLAP

Viador
Repository

SQLSQLSQL AuthenticationAuthenticationAuthentication

ServletServletServlet
Page

Builder
Page
Builder

Portal
Browser
Portal

Browser

VSC APIVSC API

HTML APIHTML API

Session
Security
Session
Security

Figure 32 - Viador Portal Architecture

10.8.5. Viador Key Components

Viador Information Center (VIC) Server

The VIC provides the portal implementation. It is implemented in Java and is normally
installed on the Web Server. The VIC interacts with Web Servers through Java Servlets.

Viador Repository

The Viador Repository is implemented as a RDBMS. The RDBMS can be Oracle, Sybase, DB2
or SQLServer. The SFA implementation is Oracle8i. Users can upload and register files of any
type.

Viador Gateways

Viador Gateways provide an interface to COTS products. The Viador Universal Metadata
Adapters (UMA) provide metadata translation for other COTS products.

Viador Servlets

The Viador Servlets provide the interface from Web Servers to the VIC. The servlets manage
stateful connections to the server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 136

Viador Services

The Viador Session Manager provides session handles for client sessions and manages
session timeouts.

10.8.6. Viador Technical Architecture

The following diagram illustrates the Viador Technical Architecture.

WebWeb
BrowserBrowser

http

Web ServerWeb ServerWeb ServerWeb ServerWeb ServerWeb Server

S
e

rv
le

t
S

e
rv

le
t

ViadorViador
ServerServer

RDBRDB

MDBMDB

SearchSearch

RDBRDB

MDBMDB

Drivers

UnstrucUnstruc--

turedtured

ContentContent

l Oracle 7,8
l Sybase 11
l DB2 5.x
l SQL Server 6.5, 7.0
l ODBC

l MS OLAP 7.0
l Essbase 5
l Express 6
l SAP BW

l Infoseek
l Verity

Client TierClient Tier DB TierDB TierWeb Server Tier

ViadorViador
RepositoryRepository

Stored in
RDB (metadata
mappings),
Filesystem (files)

PortletPortlet

CartridgeCartridge

Portlet Builder API

Third-Third-

partyparty
ApplAppl..

l ASP services
(email, stock, news,
weather, etc)

l ERP Applications
l etc

WebWeb
BrowserBrowser

Application Server Tier

https

Figure 33 - Viador Technical Architecture

10.8.7. Viador Portlets

Viador Portal introduces the concept of portlets. Portlets are content or application services
that are registered with the Viador Information Center and can be controlled and displayed
by any Viador portal interface.

There are several types:

• Content portlets—e.g. Web pages and content feeds

• Application portlets—e.g. calendars, instant messaging, conferencing

• Portal tools—e.g. Viador business intelligence applications such as the Report Designer,
OLAP Designer, the Portal Explorer

The following diagram illustrates Viador Portlets for Interwoven, Autonomy, and the
MicroStrategy COTS products.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 137

Viador
E-Portal Suite

Interwoven
Teamsite
Content

Autonomy
Search

Microstrategy

Content Portlet

Portlet API

Search
Portlet API

Application PortletPortlet API

Figure 34 – Viador SFA Portlets

Portlet integration points include:

• A direct or parameterized URL link to a Web page

• A reference to a Java object that is run within the Viador Application Server

Portlet API

A developer can write a Viador portlet to provide special information to the user. The portlet
can provide any added function, which the developer can write.

The Viador Portal launches the portlet. The portlet is a Java object that implements the Viador
interface PortletIfc. When the Portlet has been launched, it returns an array of bytes to the
Viador Portal, which in turn sends the bytes to the Web Browser component. Those bytes
could be anything, which a Web Browser component can display; most commonly HTML for
a Web page. The preferred method to invoke a portlet is to send an HTTP GET or POST
request to the Viador servlet. This request passes the session ID, and specifies which portlet
should be launched.

The HTTP Get or Post can specify the portlet in a few ways:

• The request might give the fully-qualified name of the Portlet class

• The request might specify an object which is associated with that classThe following
diagram illustrates the Viador Portlet Architecture.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 138

E-Portal

SFA

User

Folders & Channels

C
us

to
m

iz
ed

 P
or

ta
l I

nt
er

fa
ce

 (m
yP

or
ta

l)

A
cc

es
s

C
on

tro
l

Portlets

Content Reporting

Viador Repository

Microstrategy

Search

Teamsite
Interwoven

Autonomy
Search

User
Admin

Server
Admin

Figure 35 – Viador Porlet Architecture

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 139

The following diagram illustrates the Viador Control Flow.

C o n t r o l F l o w

n I n v o k e p o r t l e t v i a P o r t a l U I .

n P a s s r e q u e s t t o V i a d o r S e r v l e t t o V i a d o r S e r v e r t o
P o r t a l t o P o r t l e t .

n P o r t l e t o u t p u t s a n y b r o w s e r r e n d e r a b l e c o n t e n t .

Portal

Portlets%a %b %c %d

Session
Cartridge
Session
Cartridge

Portal UI

Viador
Servlet

Get PortletGet Portlet

INVOKE:
Default
Run
Edit

INVOKE:

Default
Run
Edit

OutputOutput

HTMLHTML XMLXML

JavaScriptJavaScript BinaryBinary

Figure 36 – Viador Control Flow

The portlet is usually launched by a user Portal window. For example, if the user double-
clicks on a SQL Report, the portal window sends a request to the Viador Servlet, asking it to
open the appropriate object. The Viador Servlet then checks the Viador Repository to find out
which portlet can open that kind of object; it launches the appropriate portlet, and passes it
the object.

A portlet must implement the Portlet API’s PortletIfc interface. The interface specifies all the
methods that the Viador Portal might need to call.

The PortletIfc interface requires four methods:

• Init

• HandleService

• GetURL

• NotifyEvent

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 140

Init

The Portal calls the portlet’s init method right after the portlet is created. The Portal passes in
its own object identifier. Also, in order to use any of the repository objects, the portlet will
need to know the object identifier of a Util object for that session. If the portlet will need
access to the repository, locate a Util object by calling the Portal’s getUtil method and save it
to a class variable.

HandleService

The Portal invokes this method to instruct the portlet to perform some task; the method
returns an array of bytes, containing an appropriate return value for that task. After the
portlet has initialized itself, the Portal calls this object to tell the portlet to take one of three
actions:

• Open some object (usually a file) for viewing

• Open some object (usually a file) for editing

• Launch, but not open any file (the default service)

• Any other service which the portlet may define (if requested through a GET or POST
command to the Viador Servlet)

When the method is called for one of these services, it is expected to return data, which can
be displayed in a Web page. The Portal serves this data to the client Web Browser
component. The portlet may define any other services it likes. For example, a form on a client
machine might submit information to the portlet by invoking a portlet-defined
SUBMIT_DATA service. The portlet could then process the information, take any
appropriate actions, and then send a new form or a confirmation screen back to the client
browser. Any Web-enabled application can send an HTTP GET or POST command to the
Viador servlet, instructing it to invoke the handleService method of whatever portlet it
specifies. The Portal invokes the portlet’s handleService method, and returns that methods
return value as the result of the GET or POST command. This way, any Web page can send
and receive data from the portlet, and through it, from the Viador repository.

GetURL

This method is passed by any Java object. The portlet may either return a URL that,
somehow, displays the object, or it may return null, signalling that it doesn’t know how to
handle such an object. The usual behavior is to provide a URL that opens the Viador servlet
and instructs it to open the object. The servlet then passes the request to the Portal object,
which takes the appropriate action. If the object is a Viador file object, the Viador portal
would find the corresponding file, determine which portlet can open it, and launch that
portlet. The Portal object and the AbstractPortlet class both provide a getURL method that
correctly handles most ordinary objects. Most portlets getURL methods can simply call the
Portal getURL, and return the Portal returns. If a portlet wishes to return a different URL for
any object, it is free to do so.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 141

NotifyEvent

The Portal calls this method to notify the portlet whenever some important event occurs. If
the user logs out from the Portal, or is disconnected because of prolonged inactivity, the
Portal will call this method.

10.9. Knowledge Management

Autonomy’s search function provides a technology infrastructure for the automatic
exploitation of content. Using unique pattern matching technology that conceptually profiles
content, the Autonomy infrastructure is able to derive an understanding of the context and
meaning of information. User interaction patterns with individual pieces of information are
used to build an understanding of the interests and skills of the users. Applications are then
implemented to provide users with personally relevant, timely information, as well as
allowing them the ability to contact other users with common interests.

Autonomy uses a combination of Bayesian Inference and Shannon’s Information Theory, to
automatically assess and extract the key conceptual aspects of any document, or piece of
unstructured information. Bayesian Inference is a mathematical technique for modeling the
significance of ideas based on how they occur in conjunction with other ideas. Shannon’s
Information Theory provides a mechanism to extract the most meaningful ideas in these
documents.

10.9.1. Scope and Application

The Autonomy search engine will provide the ability to use various types of information
searches, offer personalized profiling, and features to search both structured and
unstructured data.

10.9.2. General Architecure

The Autonomy COTS product can be represented as modules layered around the
fundamental technology. The following diagram illustrates the Autonomy Architecture.

Client

Autonomy API's

ODBC Fetch

Exchange Fetch

HTTP Fetch

Notes Fetch

Local Autoindexer
DQH

Data
DRE

Data
DRE

Local
Files

Figure 37 - Autonomy Architecture

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 142

10.9.3. User (Client) Workstation

The minimum workstation requirements to access information from the Autonomy search
engine must include an Intel Pentium 266MHz CPU with 32MB of RAM. Local processing
may come from accessing applications (i.e. MS Word, MS Excel, WordPerfect, etc....) that will
be needed to access documents of the sort that have been indexed into the Autonomy
database. The client application will need a network card and must be able to access the
network via TCP/IP. The workstation must include Windows 95 or greater and a Web
browser that is capable of running with the Windows environment (i.e. MS IE 4.01 or greater;
Netscape 4.5 or higher).

10.9.4. Software Components

The Autonomy search capability is composed of three components. These components are
the Dynamic Reason Engine (DRE), the HTTP Fetch Spider, and AutoIndexer.

10.9.5. Search Engine with the Dynamic Reason Engine (DRE)

The central component of the Autonomy search engine is the Dynamic Reasoning Engine
(DRE). It is a scalable, multithreaded engine which performs the essential tasks of automatic
import and conceptual profiling of content; delivery of results; and interaction with other
components. The DRE can operate automatically to receive new content and perform the
necessary tasks to exploit content and match it with user's interests.

Autonomy’s Distributed Query Handler (DQH) allows for the interaction of multiple DRE,
residing on the same or multiple physical servers, to transparently service a request. One
DQH can be connect to up to 99 DREs. The DRE is able to import and deliver a wide variety
of information types from disparate sources, as well as being able to import and deliver
profiles of user interests. The DRE can also notify users about relevant information, and to
also put users in contact with other users with similar interests.

The following diagram depicts the two examples of a DRE implementation, as well as how a
single DRE can be a cluster of many DREs on one or more physical servers.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 143

Server 2

Server 1

User Profile
Content Concept

A "Content" DRE A "User" DRE A "Multiple" DRE

DQH

Figure 38 – Example DRE Implementations

10.9.6. HTTPFetch Spider

The HTTPFetch is a “spidering” feature that gathers documents from other Internet or
Intranet sites and indexes them into an Autonomy DRE. The gathering steps (or fetch
process) are spidering, importing and indexing. The first step is spidering. Spidering is the
process of gathering information from a given site.

The HTTPFetch uses HTTP requests as a means to gather documents from remote Internet or
Intranet sites. Once a document has been obtained, it is automatically analyzed for possible
links to other documents. These links, if found, are followed conditionally based on the
settings specified in the set-up configuration, and further documents are retrieved. The
documents that were retrieved are then automatically imported into Autonomy’s indexing
file format and then indexed. Each instance of the HTTPFetch can "spider" multiple
Websites simultaneously, making efficient use of processor and bandwidth resources.

10.9.7. AutoIndexer

AutoIndexer is another “spidering” feature that allows documents residing on shared
network drives to be gathered and indexed into an Autonomy DRE.

AutoIndexer is a feature that polls directory structures on shared network drives for
documents that have been created by external applications (i.e. MS Word, MS Excel,
WordPerfect, etc...). The Autonomy search engine can support over 200 file formats. Once
AutoIndexer has obtained a document from a directory it will automatically analyze the
document and index certain information about the document into the Autonomy DRE. This
information contains the link to the document in the directory, the summary of the
document, the date the document was created and modified, and as an option the document
content can be indexed into the Autonomy DRE.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 144

10.9.8. Network Communication

Network communication with the Autonomy DRE is based on the TCP/IP sockets
mechanism, in a distributed, client/server architecture. All Autonomy modules (such as the
Autonomy HTTPFetch) communicate with the DRE via an IP address and an index port
number. The index port number can be any unused system port number. The user query
requests communicate with the DRE via an IP address and a query port number. The query
port number can be any unused system port number.

10.9.9. Using Structured and Unstructured Data Searches

Structured data is stored in a relational database (Oracle, Access, DB2). Unstructured data
includes all other types of data (e.g. documents, spreadsheets, and HTML files).

Autonomy can index both structured and unstructured information into the DRE. The
indexing process uses different spiders depending on the data source that needs to be
spidered. The Autonomy spiders that spider information from different data sources are
listed in the table below.

Table 46 – Autonomy Spider

Spider Information

HTTPFetch indexes documents from the Web

AutoIndexer indexes documents from the file system

Lotus Notes Fetch indexes e-mail and documents in a Lotus Notes Database

Exchange Fetch indexes documents in a Exchange Public Folder repository

ODBC Fetch indexes structured information in a ODBC repository

ODMA Indexes documents from a EDMS repository that is ODMA compliant

POP3 Fetch Indexes e-mail from a POP3 mail server

During the indexing process, key information about the document is stored and added to the
DRE using the Autonomy patented algorithms. Such information includes a link to the
document (located in the original data source repository), the title of the document, a
summary of the document, a document create date, and the concepts of the document.
Autonomy never copies the documents, it provides a link back to the original repository.
This means Autonomy will never compromise the security of the document that has been set
in the repository.

Indexing structured information is different than indexing unstructured information,
however both types will be indexed into the same DRE. Once the spiders have indexed both
types of information, users can access the indexed information. The Autonomy DRE is the
central data repository to query all data sources that have been indexed through a common
interface.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 145

10.9.10. Structured Information

The Fetch Spider is used to index structured information and uses ODBC Fetch. The ODBC
Fetch uses an ODBC data source to gather content from a database. These tables or views
contain the content to be indexed into a DRE. Other tables include the configuration,
template, main and secondary tables. The configuration table defines how the tables relate to
one another, the template tables specify how the data is stored. Each fetch has a main table
where each row in this table represents a single document in the DRE. The secondary tables
contain supplemental information for each document. Each row on the main table is read
from the database and indexed into the DRE.

During the fetch process, the individual documents are given a unique reference id that
specifies the row of the table where it was derived. The IP Address and location of the ODBC
Content Retrieving CGI prefix this reference id. When a document, originating from an
ODBC database, is returned as a link in Knowledge Update or Knowledge Server, clicking on
the link will automatically pass control to the ODBC Content Retrieving CGI, which returns
the results to the user in its original format. If the fetch (which retrieved the information) was
configured to store the content in the DRE, then the content may be returned as normal plain
text, with the loss of its original formatting. This method decreases the time required to
return the content.

10.10. Directory Server

The initial release will not include Directory Services. However, it is possible that subsequent
releases might use Directory Services for security services.

The Directory Services component is used to supply authentication and authorization
information for the security services. The authentication process validates access to the
Application Server component, and it can also authenticate for access to the Database Server
component. Such information would include the location, capabilities and various attributes
(including userid/password pairs and certificates) of resources and users, known to the ITA.

The initial release will use Netscape LDAP and DNS in lieu of Directory Services.

10.11. File Storage

10.11.1. Introduction

This section of the document provides an overview of the IBM AFS Enterprise File Systems
that is used in the SFA project for the Department of Education. AFS is part of the IBM
WebSphere Performance Pack Version 2. AFS provides the SFA system with the file sharing
capability.

10.11.2. How AFS Works

The name space concept starts with a typical desktop client computer. All AFS client
machines run a Cache Manager process. The Cache Manager maintains information about

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 146

the identities of the users logged into the machine, finds and requests data on their behalf,
and keeps retrieved files on local disk. The local caching reduces network traffic and server
load.

The central AFS file name space is key. While all the file and directory names in the name
space are related to physical data on the servers, the names are visible in a single, enterprise-
wide, and consistent directory structure. The servers perform all their work in concert to
provide a seamless file name space visible by all desktops and all users. Any changes to the
name space, any new files or any changed data are publicized to clients immediately.

Unlike past systems, which made use of the /etc/ file system on a client to map between a
local directory name and a remote file system through a mounting operation, AFS does its
mapping (file name to location) at the server. This process has the advantage of making the
served file space location independent. Location independence means that a user does not
need to know which File Server holds the file. The user only needs to know the path name of
a file.

AFS, the File Sharing component of IBM WebSphere Performance Pack, has important
applications in HTTP environments.

Typically an HTTP daemon sends to Web browsers the files available from the machine on
which it executes. The process does not care whether the files that it serves are stored on a
local disk or on an AFS file server since access to AFS files is indistinguishable from access to
local files on an AFS client machine.

Many HTTP servers will run with files on the local server, so when you see a path, it is
mapping to a file that is stored locally. From the HTTP server’s perspective, there is nothing
different from pulling a file out of the AFS directory structure. The Cache Manager and all
the other elements that go into providing this unified name space make it possible for the
HTTP Server to make use of the AFS client to access a file from the AFS directory tree.

10.11.3. AFS Concept

AFS is a distributed file system that allows users to share and access all of the files stored in a
network of computers as easily as they access the files stored on their local machines. The file
system is called distributed because files may reside on many different machines, but are
available to users on every machine.

AFS stores files on a subset of the machines in a network called File Server machines. File
Server machines provide file storage and delivery service, along with other specialized
services, to the other subset of machines in the network, the client machines. These machines
are called clients because they make use of the servers’ services while doing their own work.
In a standard AFS configuration, clients provide computational power, access to the AFS files
and other general-purpose tools to the users seated at their consoles. There are generally
many more client workstations than File Server machines.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 147

AFS servers run a number of server processes, so-called because each provides a distinct
specialized service: one handles file requests, another tracks physical location of data, a third
manages security, and so on. To avoid confusion, AFS documentation always refers to server
machines and server processes, not simply to servers.

AFS Cell

An AFS cell is a collection of client and server machines that form an administrative unit. A
cell includes the machines, the AFS data on the File Server machines, the AFS databases on
the Database Server machines and the accounts created to access the collection of machines
and their resources. The cell name is the second element in the fully qualified path of AFS
data. For example, data in the transarc.com cell would reside under /afs/transarc.com in the
directory tree.

Each AFS user account and each AFS machine belongs to exactly one cell. This is referred to
as the user’s or machine’s local cell. A user may be able to access other cells, which are
referred to as foreign cells.

 Single File Name Space

Although AFS cell is administratively independent, it is recommended to organize the local
collection of files (file space or directory tree) in a way so those users from other cells can also
access this information. AFS allows cells to combine their local file spaces into a global file
space, and does so in such a way that file access is transparent. Users do not need to know
anything about a file’s physical location in order to access the file. All they need to know is
the pathname of the file, which includes the cell name. Thus every user at every machine sees
the collection of files in the same way, meaning that AFS provides a uniform name space to
its users.

 AFS Volumes

AFS groups files into volumes, making it possible to distribute files across many machines
and yet maintain a uniform name space. A volume function like a container for a set of
related files, keeping them all together on one partition. It is a collection of related files and
directories and is part of the directory tree. This enables server administrators to break the
directory tree down into smaller units that can then be stored on File Servers. Volumes can
vary in size, but are by definition smaller than a partition, since partitions hold one or more
volumes. It is recommended that maximum volume size to be 2 GB. You can read or write to

AFS volumes that are larger than 2 GB, but you cannot perform typical AFS volume
operations, such as dumping, restoring, moving or replicating the volume.

Volumes are important to server administrators and users for several reasons.

Their small size makes them easy to move from one partition to another, or even between
machines. The server administrator can maintain maximum efficiency by moving volumes to
keep the load balanced evenly. In addition, volumes correspond to directories in the file

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 148

space; most cells store the contents of each user home directory in a separate volume. Thus
the complete contents of the directory move together when the volume moves, making it
easy for AFS to keep track of where a file is at a certain time. Volume moves are recorded
automatically, so users do not have to keep track of file locations.

Replication and Caching

AFS incorporates special features on server machines and client machines that help make it
efficient and reliable.

Replication

On server machines, AFS allows administrators to replicate frequently accessed but
infrequently changed volumes, such as those containing Web pages with product
information. Replication also called a replica, means putting an identical read-only copy of a
volume on more than one File Server machine. The crash of one File Server machine housing
the volume does not interrupt users’ work, because the volume’s contents are still available
from other machines. Replication also means that one machine does not become
overburdened with requests for files from a popular volume.

Caching

On client machines, AFS uses caching to improve efficiency. When a user on client
workstation requests a file, a process named Cache Manager, running on the client sends a
request for the data to the proper File Server machine. The user does not need to know which
machine this is; the Cache Manager determines file location automatically. The Cache
Manager receives the file from the file server and puts it into the cache, an area of the client
machine’s local disk or memory dedicated to temporary file storage. Caching improves
efficiency because the client does not need to send a request across the network every time
the user wants the same file. Network traffic is minimized, and subsequent access to the file is
especially fast because the file is stored locally.

Cached Data Validation with Callback

When AFS client machine, requests a file from the AFS File Server machine, the Cache
Manager first checks whether that file is already present in the local cache in the AFS client
machine. This is true if that file has already been requested. If the file is not there, then the
Cache Manager requests it from the AFS File Server Machine, gets the file, stores it in its local
cache and serves the file to the application that has requested it (for example, a text editor).

 The AFS File Server machine keeps a list of all the AFS client machines that have requested
and cached data associated with a certain file in their AFS cache (either RAM or disk). When
that particular file is changed by a user or process that is entitled to do so, the AFS File Server
machine directly contacts all the AFS Clients that requested that file in the past, informing
them that newer data is now available. This process is also known as callback.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 149

The AFS client’s kernel can safely return cached data to the application until it is notified by
callback. When callback is received, the client must retrieve a fresh copy of the data since the
cache is out of date.

If an AFS client receives callback from the AFS server, it marks the cached data as invalid.
However, to reduce useless network traffic, the AFS client will retrieve a fresh copy of the file
only when the client really needs it. This particular distributed approach places a lot of
responsibility on the client but speeds up the user’s response. Most of the data is read from
the local disk unless the original file is changed. Network traffic is reduced since local caching
requires fewer file accesses and new copies of cached files be requested only if needed. We
also want to point out that last save wins. This means that if two users have opened the same
file, the first user saves changes, then the second user saves the changes as well, then the
second user overwrites changes made by the first user. AFS is not a revision control system.

 Content Backup

The user’s directory, the work area, is called home volume. A snapshot of the user’s directory
is usually made every night. Based on the design of the AFS, this snapshot is a volume. It is
called a backup volume, which can also be attached to the file name space to allow easy
retrieval of files mistakenly deleted.

It is common for backup volumes to be created for all volumes in the system, not only user
volumes, so the archive process can use this stable and consistent image when writing the
data to tape. The server administrator can set up the system, so users themselves can correct
careless file deletions with no system intervention. Notice that the creation of a backup
volume every night is not automatic. The server administrator sets this up if desired with a
cron job, called bos cron job, using the Basic OverSeer (BOS) Server, This is similar to a UNIX
cron job in that it runs at a specified time, but under control of the BOS Server.

10.11.4. AFS Security

Even in a cell where file sharing is especially frequent and widespread, it is not desirable that
every user has equal access to every file. One way AFS provides adequate security is by
requiring that servers and clients prove their identities to one another before they exchange
information. This procedure, called mutual authentication, requires that both server and
client demonstrate knowledge of shared secret information (such as a password) known only
to the two of them.

Mutual authentication guarantees that servers provide information only to authorized clients
and that clients receive information only from legitimate servers. AFS utilizes algorithms and
other procedures based on Kerberos. The Massachusetts Institute of Technology’s Project
Athena originally developed this technology.

Users themselves control another aspect of AFS security, by restricting access to the
directories they own. Every AFS directory has an ACL. For any directory a user owns, the
user can build an ACL that grants or denies access to the contents of the directory. An ACL
pairs specific users (or groups of users) with specific types of access rights. There are seven

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 150

separate access rights and up to 20 different users or groups of people may appear on an
ACL.

10.11.5. AFS Architecture

AFS is a distributed file system that uses the client/server model of computing. AFS servers
are physically secure machines that store AFS files and directories, databases of AFS
information, and AFS configuration files. Server administrators and users to access
information from AFS servers and issue commands to interact with AFS servers use AFS
client machines (for example, create protection groups or manage server processes).

AFS Servers

The processes it runs determine an AFS server’s responsibilities. The responsibilities of AFS
servers include:

• File Server - A machine running AFS File Server processes stores files. It also delivers files
to AFS clients and receives files from AFS clients.

• AFS Database Server - A machine running AFS Database Server processes stores and
maintains. Its responsibility include the following:

q The Authentication Database stores an encrypted password for each account, an
encrypted server key, and account security information.

q The VLDB stores information about volumes and their physical location.

q The Protection Database contains information about AFS users and the
corresponding user IDs, AFS groups and their corresponding group Ids and group
membership.

q The Backup Database contains information used by the AFS Backup System to dump
data to tape (for example, data that will be dumped together, the schedules that will
be followed, and contents of tapes).

AFS System Control Machine (SCM)

A machine functioning as an AFS System Control Machine (SCM) stores master copies of
AFS system configuration files and distributes these files to other AFS server machines that
request them. It is important that the configuration files are the same on each AFS server in a
single environment. They contain information about the machine’s local cell, the names of
Database Servers in the cell, server encryption keys, and a list of server administrators. One
SCM per cell must be defined.

AFS Binary Distribution Machine

A machine functioning as an AFS Binary Distribution Machine (BDM) stores master copies of
AFS binaries for a particular operating system and distributes these files to other AFS server
machines that request them. One BDM may be defined for each operating system type. In
this configuration, the AFS binaries can reside on one machine and have all AFS servers of
the same operating system type pull the binaries from that machine. It is not necessary to

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 151

have a BDM, although it is recommended if you have multiple servers of the same operating
system type.

AFS Clients

An AFS Client machine runs the Cache Manager, a set of kernel modifications responsible for
communicating with processes on AFS servers and accessing AFS files and directories. The
Cache Manager is responsible for communicating with processes on AFS server machines
and accessing AFS files and directories.

The AFS File System

AFS files and directories are organized into a directory tree. The root of the directory tree is
/afs. All AFS client machines see the same directory structure under /afs. This is known as
the single file name space.

To access an AFS file or directory, the user just specifies the path. The user does not need to
know the physical location of the file or directory. In fact, the physical location could change
and the user would continue to use the same path. This is known as location independence.

The diagram below depicts a sample AFS file system.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 152

Figure 39 - AFS File System

Volumes

The AFS directory tree is broken down into smaller subtrees. Each subtree is a collection of
related files and directories called a volume. AFS volumes provide a unit of administration
for replicating frequently accessed files and directories, moving data from one physical
location to another. AFS volume size should be restricted to 2 GB. It is possible to have a
volume larger than 2 GB, but then it will not be possible to perform certain administrative
tasks, such as dumping, restoring, moving or replicating the volume.

The diagram below depicts the AFS volume structure.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 153

Figure 40 - AFS Volume Structure

Each AFS volume is identified by a name. The root volume is called root.afs by convention.
The next volume is typically the root.cell volume.

AFS volumes are stored on the disk partitions of File Server machines. AFS partitions are
often referred to as vice partitions because they have names in the form /vicepx, where x is a
letter in the range from a to z and from aato iv. AFS partition names must be unique on a per
server basis. In other words, it is possible to have a partition called /vicepa on the server
wspp1 and also have a partition called /vicepa on the AFS server wspp2. The AFS partition
size is constrained by the underlying operating system.

Mount Points

The point at which a volume is attached to the AFS directory tree is called a mount point. To
users, mount points look like subdirectories. A mount point contains the name of the volume
being attached to the directory tree. It does not contain information about the volume’s
physical location.

The diagram below depicts the AFS mount points.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 154

Figure 41 - AFS Mount Points

Volume Location Database (VLDB)

When a user specifies a path for an AFS file, the AFS client machine’s Cache Manager
interprets the path. The Cache Manager can extract the volume name from the mount point.
To access the volume, the Cache Manager must determine where the volume resides, so it
contacts the VLDB. The VLDB notifies the Cache Manager of the volume’s location(s). The
Cache Manager then contacts a File Server on which the volume resides and requests the file.

Caching

When the Cache Manager receives the requested file, it caches the file on the AFS client
machine’s local disk. Subsequent requests for the file may use the cached copy instead of
fetching another copy from the File Server.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 155

Callback Mechanism

When the File Server sends the file to the Cache Manager, it also sends a callback. The File
Server will notify the Cache Manager, by breaking the callback, if the file changes. When a
user requests a file that is already cached, the Cache Manager checks to see if the file has a
valid callback. If so, the request is satisfied from the cache. If the callback has been broken, the
Cache Manager retrieves the file from the File Server.

Protecting AFS Files and Directories

ACLs are used to protect AFS data. Every AFS directory has an ACL that controls access to
the directory and its contents. The ACL is applied at the directory level, not the file level as in
UNIX. An ACL consists of entries. Each entry specifies who has permission to access the
directory and files within the directory. The entry also specifies what access rights are
granted to that user or group of users. There are seven access rights, or permissions, that you
can assign on an ACL:

• Lookup (l) - This permission allows you to list the contents of the directory and examine
the directory’s ACL. It is necessary in conjunction with other permissions

• Read (r) - This permission allows you to read the contents of files in the directory

• Insert(i) - This permission allows you to add new files or subdirectories to the directory.
You can do this by creating the files with an editor or by copying the files from another
location

• Write (w) - This permission allows you to modify the contents of files and to use the
UNIX chmod command on files in the directory

• Delete (d) - This permission allows you to remove or move files from the directory

• Lock(k) - This permission allows you to run programs that set an advisory lock on files in
the directory

• Administer (a) - This permission allows you to change the ACL on the directory

Server administrators and users can define AFS protection groups that contain a list of AFS
users or machines. This protection group can be added to ACLs to give all members of the
group the same access rights.

AFS Commands

There are two types of AFS commands: simple commands and compound commands.
Simple commands consist of one word. Syntax is available for each of these simple
commands by issuing the command with the help switch. Compound commands consist of
two components: a command suite and a subcommand.

AFS Authentication

Authentication is proving the user’s identity to AFS. A user, prior of being authenticated by
AFS, has access to public AFS data, data that the system:anyuser group has permission to
access via ACLs in addition to the client machine’s local disk that the user has permission to

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 156

access via the operating system’s permissions. After the authentication, the user has
additional access to protected AFS data, data that the user or the user AFS protection group
that the user belongs to has permission to access via the ACLs.

Authenticating is accomplished by logging in via an AFS modified login or by issuing the
klog command. AFS includes a modified version of login for most AFS client machine
supported system types. AFS integrated logon for Solaris involves installation and
configuration of a Pluggable Authentication Module (PAM). This module integrates
authentication mechanisms, such as login, to provide security infrastructure for all
authenticated access to and from the machine. This modified login looks like the local
operating system login, but the user is authenticated to AFS at login time. At login time, the
user specifies a user name and password. If the password matches the user’s password in the
Authentication Database, the user is logged in to the local operating system and is granted an
AFS token. If the password does not match the user’s password in the Authentication
Database, the user does not receive a token, but the user is logged in to the operating system
if the password matches that of the local operating system.

To successfully authenticate via AFS modified login, AFS user names must match those of
the local operating system. On Windows NT, passwords must also match. A token is
evidence that the user is authenticated in a cell. Tokens have default lifetime of 25 hours,
although server administrators can change this. The maximum token lifetime is 720 hours (30
days). When a token’s lifetime is exceeded, the token expires and the user must re-
authenticate. A user can re-authenticate before a token expires to refresh the token’s lifetime.

AFS Server Concepts

AFS servers are physically secure machines that store AFS files and directories, databases of
AFS information, and AFS configuration files.

Types of AFS Servers

There are four types of AFS servers:

• AFS File Server

• AFS Database Server

• AFS System Control Machine

• AFS Binary Distribution Machine

An AFS server can, and usually does, have multiple responsibilities. For example, it is
common to configure an AFS server to function as a File Server and a Database Server. You
do this by running the processes that give the machine these responsibilities.

AFS Server Processes

All AFS servers run the BOS Server process, bosserver. This process is responsible for starting
and monitoring other AFS server processes on that machine. It knows which processes to

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 157

start based on configuration files the server administrator creates on the local machine. A
machine functioning as an AFS File Server runs the fs trio of processes:

• The fileserver process runs continuously during normal operation to handle requests at
the file and directory level. This is the process you interact with when you access data
from AFS file space.

• The volserver process also runs continuously during normal operation and handles
operations at the volume level. This is the process you interact with when you create,
delete, or move volumes.

• The salvager process checks the system for internal consistency, and repairs errors it finds.
It is analogous to UNIX fsck, but unlike fsck, it understands AFS volume structures and
only operates on AFS data. The salvager runs automatically at startup time if the
bosserver determines that the server was not properly shut down. It also runs
automatically if the fileserver process fails. A server administrator can invoke the
salvager automatically via the bos command suite, via the salvager command, or via the
AFS Control Center’s Server Manager.

While these are three separate processes, the BOS Server treats them as a unit and
understands dependencies between the processes. A machine functioning as an AFS
Database Server runs separate processes for each of the four AFS databases:

The kaserver process is responsible for maintaining the Authentication Database. It also
verifies user identity at login by requiring a password, grants the user a token as proof to AFS
server processes that the user has authenticated, and provides a way for:

• server and client processes to prove their identities to each other. The kas command suite
is used to interact with the kaserver process

• The ptserver process is responsible for maintaining the Protection Database and
providing information when the fileserver process needs to retrieve information about an
AFS user or protection group. You can use the pts command suite to interact with the
ptserver process

• The vlserver process, not to be confused with the volserver process that runs on File
Servers, is responsible for maintaining the VLDB and for providing the Cache Manager
with information about volumes and volume location. The vos command suite is used to
interact with the vlserver process

• The buserver process is responsible for maintaining the Backup Database and for
providing an interface to the AFS Backup System. The backup command suite is used to
interact with the buserver process

• The Update Server processes are responsible for transferring information from SCMs and
BDMs to other AFS servers. These processes include upserver and upclient. Although the
name may suggest otherwise, these processes run on AFS servers, not AFS clients:

q The upserver process runs on SCMs and BDMs and is responsible for distributing the
contents of a specified directory, such as /usr/afs/etc on an SCM or /usr/afs/bin on
a BDM, to other servers that request them.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 158

q The upclient process is responsible for checking a specified directory on a particular
machine and retrieving any files that have changed.

In addition to these processes, AFS servers may also run the runntp process. This process
synchronizes an AFS server’s clock with the clock on another machine. It is important for the
clocks on all AFS servers in a cell to be synchronized for AFS services to function properly. If
there is another time-keeping mechanism already running on the server, it is not necessary to
run this process.

Local Directories

AFS creates and relies upon information in a number of directories on a server’s local disk:

On UNIX systems, the /usr/afs/etc directory contains cell-wide server configuration files
that must be the same on every AFS server in your cell. The bos command suite is used to
update the files. The files include:

• CellServDB - The CellServDB file is an ASCII file that contains a list of the local cell’s
Database Servers

• UserList - The UserList is an ASCII file that contains the names of system administrators
in the local cell

• KeyFile - The KeyFile contains server encryption keys. A server encryption key is a string
of octal numbers that is used to encrypt/decrypt packets of information. This file
contains one key that matches the key in the Authentication Database for the AFS entry

• ThisCell - The ThisCell file is an ASCII file that specifies the cell to which the server
machine belongs

On the UNIX platform, the /usr/afs/local directory contains machine-specific configuration
files. These files differ from server machine to server machine. The commands from the bos
command suite are used to update the files. The files include:

• BosConfig - The BosConfig file contains information about AFS processes that the
bosserver is responsible for. It defines which processes should be running on the server
and the state they should be in. This file also stores information that specifies when the
bosserver checks for new binaries in its /usr/afs/bin directory and when it restarts all of
the machine’s AFS server processes.

• SALVAGE.fs - The SALVAGE.fs file controls the behavior of the Salvager. If this file
exists when the bosserver starts, the bosserver will run the Salvager before starting other
File Server processes. This file is created when the bosserver starts the fileserver process
and is removed when the bosserver properly shuts down the fileserver process.

• salvage.lock - The salvage.lock file is a zero-length file that exists when the Salvager is
running. The purpose of this file is to allow only one server administrator to run the
Salvager on the File Server at a time.

• NoAuth - The NoAuth file is a file that should not be present under normal
circumstances. If present, AFS server processes are not required to check authorization.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 159

• Sysid - The sysid file contains up to the maximum number of IP addresses supported for
each server machine; this number in AFS 3.4a and 3.5 is 15. The sysid file also contains a
unique host identifier which distinguishes the server from all others in the cell. The file is
automatically created at startup time. Since this file contains server-specific information,
server administrators should not copy this file from one File Server to another.

On UNIX systems, the /usr/afs/bin directory contains AFS server and command suite
binaries. Since the binaries will be the same on every AFS server of the same operating
system version, a master copy can be maintained on the BDM and the upclient/upserver
processes are used to distribute the binaries to other AFS servers with the same operating
system version.

If a UNIX machine is functioning as an AFS Database Server, the /usr/afs/db directory
contains the four AFS database files, which are:

• kaserver.DB0, the Authentication Database

• prdb.DB0, the Protection Database

• vldb.DB0, the Volume Location Database

• bdb.DB0, the Backup Database

The /usr/afs/logs directory on UNIX systems contains log files associated with various AFS
server processes. It may also contain old versions of the log files if they exist and core files
generated by the AFS server processes. The log files found in this directory include:

• BosLog, generated by the bosserver process

• FileLog, generated by the fileserver process

• VolserLog, generated by the volserver process

• SalvageLog, generated by the salvager

• AuthLog, generated by the kaserver process

• VLLog, generated by the vlserver process

• BackupLog, generated by the buserver process

AFS Client Concepts

Server administrators and users to access information from AFS servers and issue commands
to interact with AFS servers use AFS client machines (for example, create protection groups
or manage server processes).

Client Responsibilities

Recall that AFS clients run the Cache Manager, a set of kernel modifications responsible for
communicating with processes on AFS servers and accessing AFS files and directories. When
a user requests an AFS file, the Cache Manager interprets the path to extract the volume
name from the mount point, requests volume location information from the VLDB, fetches
the file from the File Server, and caches the file locally.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 160

Processes

The afsd process runs on AFS client machines. This process is started from the client
machine’s initialization file. The afsd process initializes the Cache Manager by transferring
information into kernel memory and starting several AFS daemons. When the afsd process
starts, some of its responsibilities include:

Setting a field in kernel memory that defines the cell to which the machine belongs

• Putting names and IP addresses of Database Servers from local and foreign cells into
kernel memory

• Defining the directory under which the AFS directory tree resides, typically /afs

• Determining whether to use disk or memory cache

• Defining the name of the local directory to be used for caching (on UNIX, typically
/usr/vice/cache)

• Setting cache size and cache parameters

• Randomly selecting a File Server in the local cell to get time from, unless the -nosettime
switch is used with the afsd binary

Local Directories

On the UNIX platform, AFS relies upon information in two directories on a client machine’s
local disk:

The files necessary to configure the client machine are by default located in the /usr/vice/etc
directory. They include:

• afsd binary file – This binary initializes the Cache Manager.

• cacheinfo file - The cacheinfo file stores information about the cache. It specifies the
directory where the Cache Manager mounts AFS, the name of the cache directory, and
the cache size.

• ThisCell file - The ThisCell file contains the name of the client machine’s local cell.

• CellServDB file - The CellServDB file contains the names and IP addresses of Database
Servers in the local cell and in foreign cells.

• modload (Solaris) subdirectory - The modload directory on Solaris contains files
necessary to build a kernel that incorporates AFS modifications if they exist for the
specific operating system.

The /usr/vice/cache directory contains files that the Cache Manager creates or maintains for
its own use. The contents include:

• V- files - V- files are used to store chunks of data in the cache. The file names are in the
form Vdigits, such as V3367. The number of V- files in the directory depends upon the
size of the cache.

• CacheItems - The CacheItems file is a cache overhead file that stores information about
each V- file in the cache.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 161

• VolumeItems - The VolumeItems is another cache overhead file that records information
about volumes that the Cache Manager has accessed. This includes volume-to-mount
point relationships and volume-location information.

The @sys Variable

AFS uses the @sys variable to simplify administration of operating system-specific files. The
@sys variable expands to the current system’s CPU and operating system type, for example:
sun4x_56 for Solaris 2.6. When the Cache Manager encounters the @sys variable in a path,
@sys is replaced with the machine’s system type. The following figure offers a graphical
representation of the usage of the @sys variable on the Solaris platforms.

Figure 42 - @sys variable on the Solaris platforms

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 162

AFS Volume Concepts

The AFS directory tree is broken down into smaller subtrees. Each subtree is a collection of
related files and directories called a volume. AFS volumes provide a unit of administration for
replicating frequently accessed files and directories, moving data from one physical location
to another.

Volume Headers

Volume headers contain pointers to where the volume’s files and directories are located on
disk. Although an AFS partition is formatted as the vendor-supplied file system, data is
stored in a different manner. If a server administrator logs in to an AFS File Server and lists
the contents of a vice partition, the contents would include

volume headers. The following diagram depicts the relationship between the volume
pointers, headers, files and directories.

V1235987345.vol
V1235987345.vol

V1245689245.vol
V1245689245.vol

Volume Pointers

Volume Headers

Files and Directories

Figure 43 - Relationship Between the Volume Pointers, Headers, Files and Directories

Types of Volumes

AFS has three types of volumes:

• A ReadWrite volume contains modifiable copies of AFS files and directories. Each
volume has a ReadWrite version.

• A ReadOnly volume contains a non-modifiable copy, replica, of the contents of a
ReadWrite volume. Each ReadWrite volume can have up to eleven ReadOnly replicas.
The name of the ReadOnly volume is the name of the ReadWrite volume with a
.readonly extension (for example, root.afs.readonly).

• A Backup volume contains a non-modifiable snapshot of the contents of the ReadWrite
volume. Each ReadWrite volume can have at most one Backup version. The name of the
Backup volume is the name of the ReadWrite volume with a .backup extension (for
example, root.afs.backup).

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 163

Volume Traversal Rules

The VLDB contains volume location information. A Cache Manager contacts the VLDB to
learn information about a particular volume. The VLDB tells the Cache Manager where the
volume and its replicas reside. If replicated, server preferences determine which server to
contact for a replica. The decision whether to access the ReadWrite version or a ReadOnly
replica is based on traversal rules.

Traversal rules define how a client chooses between the ReadWrite version and ReadOnly
replica if the volume is replicated. The rules are as follows:

• If root.afs is replicated, use a ReadOnly volume.

• If root.afs is not replicated, use the ReadWrite volume.

As the path is traversed:

• If you are currently in a ReadOnly volume and the next volume is:

q Replicated, you must use a ReadOnly volume

q Not replicated, you must use the ReadWrite volume

• If you are currently in a ReadWrite volume, you must access a ReadWrite volume

Traversal rules assume that you did not force a mount point to contain the name of a
ReadOnly volume. The following figure offers a graphical representation of traversal rules.

Figure 44 - Graphical Representation of Traversal Rules

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 164

In the root.afs volume, there is a ReadWrite mount point, .tr.com, that contains the name of
the root.cell volume. We know this is a ReadWrite mount point because it contains a percent
symbol (%) instead of a hash symbol (#).

The Cache Manager does not support the previously stated traversal rules when it crosses or
interprets a ReadWrite mount point. Instead, the fact that a mount point is ReadWrite
indicates that the Cache Manager should access a ReadWrite version of the specified volume.

By convention, if the Regular mount point that contains the name of the root.cell volume is
called cellname, and the ReadWrite mount point that contains the version of the root.cell
volume is called .cellname.

Since it is best to let the Cache Manager follow traversal rules, and ReadWrite mount points
do not follow traversal rules, there should only be one ReadWrite mount point in your
directory tree. In fact, when the Cache Manager is on a ReadWrite volume, it always accesses
the ReadWrite version of the next volume.

Therefore, you only need one ReadWrite mount point high up in your namespace to put the
Cache Manager on the ReadWrite path, and guarantee that the Cache Manager can access the
ReadWrite version of all volumes.

When a Web author wants to access a file in the AFS directory tree, he specifies the path.
Suppose he wanted to access /afs/tr.com/Web-content/filex. This would take the Web
author to the file in the ReadOnly version of the Web-content volume. If the Web author
wanted to access a modifiable version of the file, he must specify the path /afs/.tr.com/Web-
content/filex because it leads to the ReadWrite version of the Web-content volume.

When a server administrator is setting up the AFS directory structure, it is important to create
the ReadWrite mount point to the root.cell volume before replicating the root.afs volume. If
the server administrator forgets to do this, it may not be possible to access the ReadWrite
volumes in the directory tree and create mount points to attach volumes into the directory
tree.

In particular, if a server administrator forgets to replicate the root.afs volume, replicated
copies of all volumes mounted beneath root.afs will never be accessed. Suppose a server
administrator forgot to replicate the root.afs volume but did replicate the root.cell volume in
the tr.com cell. The replicas of the root.cell volume would not be used. There could be up to
11 replicas of the root.cell volume that are taking up space on the File Servers but are not
being accessed. Auser would specify path /afs/tr.com to access the root.cell volume. In this
case, the Cache Manager would use traversal rules to determine which version of the root.afs
volume to access. Since root.afs is not replicated, the Cache Manager must access the
ReadWrite version. The Cache Manager extracts the name of the root.cell volume from the
tr.com mount point and contacts the VLDB to determine where the volume resides. Even
though there are replicas of this volume, the Cache Manager uses traversal rules. The rules
indicate that if you are in a ReadWrite volume, you must access a ReadWrite volume.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 165

A similar situation occurs if you forget to replicate any volume in the directory tree. If you
forget to replicate a volume, replicas of all volumes mounted beneath that volume would
never be accessed.

Naming Suggestions

When you create a volume, you create its ReadWrite version. The name you select should be
no more than 22 characters. The limit is really 31 characters, but includes the ReadOnly or
Backup extensions. When you create a ReadOnly replica or a Backup volume, the ReadOnly
and Backup extensions are automatically appended to the volume name.

The name you select for a volume should reflect the volume contents. Server administrators
should be able to examine volume names from the VLDB or from volume headers and have
an idea of what the volume contains.

The volume name should also reflect where the volume is attached in the directory tree. This
is useful if you have to delete a volume. When you delete a volume, you should also delete
the mount point that attaches the volume to the directory tree. If your volume name and
mount point do not correspond, you will have to find another way to determine where the
volume was attached to the directory tree so you can delete its mount point.

10.12. Database Server

None

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 166

11 Acronyms List

Table 47 – List of Acronyms

Acronym Description

ACL Access Control List

AFS Andrew File System

AIX Advanced Interactive Executive

API Application Programming Interface

ATM Asynchronous Transfer Mode

BDM Binary Distribution Machine

BOS Basic OverSeer

CAD Computer-Aided Drawing

CAM Computer-Aided Manufacturing/Methods

CBR Content Based Routing

CDS Cell Directory Service

CGI Common Gateway Interface

CICS Customer Information Control System

CMP Container-Managed Persistence

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial-Off-the-Shelf

CPU Central Processing Unit

DAS Database Auto-Synchronization

DB Database

DCE Distributed Computing Environment

DHTML Dynamic Hypertext Markup Language

DMZ Demilitarized Zone

DNS Domain Name Server

DOE Department of Education

DQH Distributed Query Handler

DRE Dynamic Reason Engine

DTD Document Type Definition

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 167

Acronym Description

DTS Distributed Time Service

EAI Enterprise Application Integration

ESS Enterprise Solution Structure

FDDI Fiber Distributed Data Interface

FTP File Transfer Protocol

GB Gigabyte

GUI Graphical User Interface

HP Hewlett Packard

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IA Internet Architecture

IDL Interface Definition Language

IIOP RMI/Internet Inter-ORB Protocol

IMS Information Management System

IP Internet Protocol

IPSec Secure Internet Protocol

IS Internet Server

ISS Interactive Session Support

IT Information Technology

ITA Integrated Technical Architecture

JDBC Java Database Connectivity

JDK Java Development Kit

JNI Java Network Interface

JSP JavaServer Pages

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MAC Media Access Control

MB Megabyte

Mhz Megahertz

MOFW Managed Object Framework

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 168

Acronym Description

ND Network Dispatcher

NIC Network Interface Card

NNTP Network News Transport Protocol

NT New Technology

ODBC Open DataBase Connectivity

ODS Operational Data Stores

OLAP On-Line Analytical Processing

OMG Object Management Group

PAM Pluggable Authentication Module

PDF Portable Document Format

POP3 Post Office Protocol 3

RAM Random-access Memory

RDBMS Relational Database Management System

RMI Remote Method Invocation

RPC Remote Procedure Call

SAN Storage Area Network

SCM System Control Machine

SFA Student Financial Assistance

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

SQLJ Structured Query Language for Java

SSL Secure Socket Layer

TCP Transmission Control Protocol

TP Transaction Processing

UI User Interface

UMA Universal Metadata Adapters

UNIX Universal Interactive Executive

URL Uniform Resource Locator

VDC Virtual Data Center

VIC Viador Information Center

VLDB Volume Location Database

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 169

Acronym Description

VM Virtual Machine

WAN Wide Area Network

WAS EE WebSphere Application Server Enterprise Edition

WAS WebSphere Application Server

WLM Workload Management

WTE Web Traffic Express

XML Extensible Markup Language

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 170

Appendix A: Detail of DRE Configuration Sections

[My Security] Section

The meanings of these sections together with the meaning of their key value pairs are
covered in detail below. Please note that for settings that can have either of two values TRUE
or FALSE, you can use any of the following values:

TRUE=ON=Y=1

FALSE=OFF=N=0

[License] Section

This section contains the licensing details, including the license holder’s name and the license
key. Do not edit this section, as this could stop the DRE functioning.

Table 48 – [Licencse] Section of DRE Configuration File

Key Description

KEY
License key.

E.g. KEY=************************

HOLDER
License holder’s name.

E.g. HOLDER=AUTONOMY

[Server] Section

This section governs the basic DRE operation.

Table 49 – [Server] Section of DRE Configuration File

Key Description

QUERYPORT
The port number by which queries are sent to the DRE.

E.g. QUERYPORT=7000

INDEXPORT

The port number by which indexing commands are sent to the DRE. If this
line is not present or is set to 0, then indexing will not be available.

E.g. INDEXPORT=7002

HYPHENS

When set to 1, the DRE will index words that are hyphenated as individual
words and as one word. E.g. Off- line would have the words ‘Off’, ‘Line’ and
‘Off-Line’ indexed.

When set to 0, the DRE will only index hyphenated words separately. E.g.
Off-Line would be indexed as ‘Off’ and ‘Line’

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 171

Key Description

HYPHENCHARS
This indicates the symbol that represents the hyphen.

E.g. HYPHENCHARS=- or / or * etc.

TERMSIZE
This represents a set number of characters per word to store. This is used
when running different languages on the DRE. The default value is 10.

CHARCONV

Indicates the language in which the DRE is running.

This can be either: European, Japanese, Korean, Thai, Simplified
Chinese, or Traditional Chinese

E.g. CHARCONV=2

For any language other than European please contact Autonomy
for additional files.

STOPLIST=filename
Load stoplist file, list of words to be ignored from your search
(words with 0 weighting). Defaults to STOPLIST2.DAT

STATUSDIR=path
Specify path for the DRE’s Status Directory, directory which stores
the temp files when indexing. Defaults to Status

QUERYCODE=code Specify code string that must appear in query request

INDEXCODE=code Specify code string that must appear in index request

QUERYCLIENTS/

INDEXCLIENTS

These are optional and do not need to be included in the DRE.ini.
They are lists of IP Addresses (which can include wildcards),
separated by commas, for machines permitted to send
queries/indexer commands. If these lines are present then only
machines with listed IP Address will have their index
commands/queries serviced.

E.g. QUERYCLIENTS=193.128.*,207*

INDEXCLIENTS=*

As Index Commands are potentially destructive, it is advisable to
set INDEXCLIENTS=127.0.0.1 or INDEXCLIENTS=localhost.

If these parameters do not have the S on the end the settings are
ignored.

STRIPLANGUAGE

This too is optional and is used to select which language to use
when stripping (e.g. running is stripped to run). The default setting
is 0 options are:

0 for English,
1 is used for conversion from UK to US English,
2 is used for no stripping,
3 is for German.

E.g. STRIPLANGUAGE=1

ECHO

When set to 1 and the DRE is run from an MS-DOS window rather
than a service, then a DRE activity log is displayed in the DOS
window.

E.g. ECHO=1

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 172

Key Description

LOGGING

When set to 1, this indicates that the DRE activity is logged to a file,
rather than the active DOS window.

E.g. LOGGING=1

LOGFILE

This is optional and indicates which file is to be used to log the DRE
activity. The default is QUERYH.log

E.g. LOGFILE=QUERYH.log

NOSUGGESTNUMS

If set to 1, this disables suggestions from terms which are numeric.
Where you may specify a query it will ignore any numbers within
the DRE. (See Section “Dynamic Reasoning Engine Commands”)

E.g. NOSUGGESTNUMS=1

QUERYSUMMARY

When set to 1, the DRE will return the first three lines of the
document in a specified field named Quick Summary in the DRE.ini
file.

IMPORTANT: In the DRE.ini file, QUERYSUMMARY must be set
to 1 and in the CFG file, located in the Scripts Directory, with the
Autonomy Product name as its prefix, QUERYSUMMARY must be
set to ‘on’.

SUGGESTTERMS

This specifies the default number of terms that are used when
performing a ‘Suggest More’ Command during Querying. (See
Section “Dynamic Reasoning Engine Commands”)

E.g. SUGGESTTERMS=40 so the system takes the best 40
terms from the original document and uses them as a query which
will produce further relevant documents.

COMBINE

When set to 1, this indicates that all sections of a document that
were indexed separately are combined in the query result to show
as one document. (See Section “Sectioning a document”).

E.g. COMBINE=1

MAX_DOC_PER_STRCTDAT

This deals with memory allocation and should generally not be
altered.

E.g. MAX_DOC_PER_STRCTDAT=20000

PROPERNAMES
When set to 1, this indicates that a name consisting of more than
one word must be combined and indexed as one word. E.g. Joe
Bloggs would be indexed as one word if PROPERNAMES=1

MEMFIELDS

This is an advanced option and causes particular fields to be held in
memory for faster structured field queries. The options for this
parameter are:

Enabled
Disabled

E.g. MEMFIELDS=1

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 173

Key Description

FIELDSEARCH

When set to 1, all text contained in a fields will be indexed so they
are searchable, use: FIELDNAME notation.

Data will need re-indexing if this parameter is changed. The
options for this parameter are:

Disabled

Enabled set as default

SOUNDEX=0/1 Index soundex words as well as normal words. Default 0

DEFAULT_XOPTIONS=string

String added to whatever xoptions are specified in a query. For
options, refer to the xoptions options in the section “Query to DRE
database(s)” of Appendix: “Low Level Commands to the Dynamic
Reasoning Engine”.

MAXQUERYWORDS=n Max number of words allowed in a query. Default 200

MAXTOTALHITS=n Max number of hits allowed in evaluating query. Default 1000000

MAX_QDOCS=n Max number of docs to return from query, Default 5000

UNESCURL=0/1
Apply strUnescape (unescapes any variables that come to the DRE)
to any cgi variables.

ROOT_STRCTDAT=path Path to store STRCTn.DB files. Default ./

INDEXTITLES=0/1 Index titles as content. Default 1

MAXLOGSIZE=n Max size of QUERYH.LOG. Default 1000000

INDEXNUMBERS=0/1 Enable indexing of numbers. Default 1

STORECONTENT=0/1 Stores the content in the DRE. Default 1

SEPARATORS=chars
Chars to use for separating the input text. E.g. SEPARATORS=, for
a comma delimited file or a ‘ ‘ for a normal text file.

RECVTIMEOUT=n Seconds after which a ‘receive’ times out. Default 10 seconds

MINFREESPACE=n
Minimum disk space required to allow indexing. DRE has internal
minimum which varies according to index size.

SUGGESTBIAS=0/1 Increase weight of suggest results. Default 1

INDEXPRI=0/1
Give priority to indexer. If set to 0, queries will always have priority,
but there is a possibility indexing will be unable to continue in the
event of continuous sustained overlapping queries

[Schedule] Section

Schedule represents the procedure that the DRE performs to vacate the disk space allocation
of where deleted records once were.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 174

Table 50 – [Schedule] Section of DRE Configuration File

Key Description

TIME
This specifies the time that the Compact Procedure will first be performed.

E.g. TIME=23:59

INTERVAL

This specifies the number of hours that the DRE will wait before the next
Compact Procedure will be performed.

E.g. INTERVAL=24

COMPACT

This indicates the minimum number of deleted documents required for the
Compact Procedure to take place.

E.g. COMPACT=1

EXPIRE
This must be set to 1 if you want any of your databases to expire after the
specified duration.

[Default]

This section governs the default configuration settings. The values in this section are
employed for any job stated in the [Configuration] section, that does not have its own
definition entry.

Table 51 – [Default] Section of DRE Configuration File

Key Description

deleteEscapeReferences

Boolean value that when set to 1 will escape references when doing deletion.
This is needed when trying to remove documents with spaces in the
reference. You will need to use it with DRE version 3.0 and setting
UNESCURL=1 in the DRE.INI

deletePathReplaceUpToSlash

If PollingAction=7 or PollingAction=8, this is used to specify a string
that is to be replaced up to a certain’/’. This is used so that a single
portion of many strings which contain different substrings can be
replaced as opposed to just one particular word.

E.g. In the case where the files in the queue are

C:\a\b\hello,c:\a\c\hello

And c:\b\a\hello

deletePathReplaceUpToSlash=3

Would replace the portion up to the third back-slash in each string.

DeleteReferenceFromContent

Boolean value telling Autoindexer when it deletes files that the reference
may have been obtained from the document content. The setting is either on
(1) or off (0). Instead of using the usual file reference for example
c:\data\myfile this setting enables the reference to be obtained from the
document content.

DeleteReferenceStart
Start tag to be used when obtaining the reference from content. E.g.
deleteReferenceStart=<DOCID>

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 175

Key Description

DeleteReferenceEnd

End tag to be used when obtaining the reference from content. E.g.
deleteReferenceStart=</DOCID> So using the deletereferencestart and end,
the content found between the two will be used as the document reference.
These settings only apply when deleting documents, as to delete all the
Autoindexer does is send a delete command to the DRE with a reference.

If you leave either of these start or end parameters blank then it defaults to
beginning and end of file. You can also use \n, \r, \t in the settings so that
you can delimit the reference by return characters.

directoryAfterDate

The number of days before today that the document must have been
modified.

E.g. directoryAfterDate=-1 (i.e. yesterday)

directoryBeforeDate
The number of days after today that the document must have been modified.

E.g. directoryBeforeDate=5 (i.e. 5 days from today)

DirectoryCantHaveCSVs

This specifies the string that must not appear in the directory path of a
spidered document.

E.g. directoryCantHaveCSVs=*.sys,*.bat,*.exe

DirectoryFileMatch
This is a wild card specification of which files in the directory to process.

E.g. directoryFileMatch=*

DirectoryMustHaveCSVs

This specifies the string that must appear in the directory path of a spidered
document.

E.g. directoryMustHaveCSVs=*/temp/*

DirectoryPathCSVs

This specifies the directory in which lie the files to be processed.

E.g. directoryPathCSVs=D:\projects\autoindexer\files

This can be a comma separated list of directories which means that more
than one directory can be processed.

DirectoryPathRecurseMatchCSVs

This setting indicates a set of wildcards to match against whilst recursing the
directory tree. This is different from directoryMustHaveCSVs in that the
wildcard match is done against the recursion path not the full path of the file.
Hence, it's more efficient as it won't recurse directories that it doesn't need to
do.
So for example:
directoryPathCSVs=C:\files\
directoryPathRecurseMatchCSVs=*01*,*02*
will process:
c:\files\199901
c:\files\199902
It will not do:
c:\files\morefiles\199901
c:\files\morefiles\199902
as the match is done at every recursive step.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 176

Key Description

DirectoryRecurse

This indicates whether or not to recurse into directories. It can be either:

1 or on for “Recurse”

0 or off for “Don’t Recurse”

E.g. directoryRecurse=off

DREHost
IP address where the DRE resides. Should you require to index into more
that one DRE separate the IP addresses by a comma. E.g.
DreHost=localhost,120.7.0.0

FilenameOutputMode
Boolean value where, if set to 1, will create a file listing all the files that are to
be processed. It is used so that if you need to do file based processing you
can create a list of files that need processing from a directory.

FilePollFilename
This specifies the filename from which the list of files to be processed is read.
E.g. filePollFilename=queue

FileBaseDirectory

This is the directory path to attach to each file in filePollFilename. You can
specify either the full paths or just the File names inside the queue file.

E.g. BaseDirectory=c:\Files\

importIDXFilesAction

Specifies what to do with idx files that have been processed. This can be
either:

0: delete IDX file

1: move the IDX file to another directory

2: leave in directory

importIDXFielsMoveTo
If importIDXFilesAction=1, this is the full path that specifies where the idx
files are moved to.

ImportPathReplaceString Specifies the string that will replace the substrings of files in the queue.

IndexOverSocket
This indicates if the file to be indexed is to be sent over the socket or if it is
local, see IndexLocalFile

IndexPort

The port number by which indexing commands are sent to the DRE. If this
line is not present or is set to 0, then indexing will not be available. If you are
using more than one DRE specify the index ports separated by commas.

E.g. INDEXPORT=2001,6001

MoveToDirectory
This specifies which directory to move to when PollingPostAction is set to 2.

E.g. MoveToDirectory=D:\projects\autoindexer\processed\

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 177

Key Description

PollingAction

This specifies the action to perform when polling. The value of this
parameter can be either:

1 for ‘indexing idx files to a DRE’ (idx files are files that are in hash form. See
Section 4.1)

2 for ‘importing files in various formats and indexing them into a DRE’

7 for import+index+delete this will import files to an IDX format, index them
and also delete any documents from the DRE that have been removed from
the local file structure

8 ‘delete from a DRE’

E.g. PollingAction=2

PollingPostAction

This specifies the action to perform after the file has been processed. The
value of this parameter can be either:

0 for ‘do nothing’

1 for ‘delete the file after processing’

2 for ‘move the file to another directory’. It will keep the subdirectory
structure.

The value of this key=value pair defaults to 0.

E.g. PollingPostAction=0

When moving the originally scanned files somewhere else, the subdirectory
structure is retained.

BOOL FileCopyKeepDirStructure(charsRoot1, charsFilename, charsRoot2,
charsMode)

PollingMaxNumber

This specifies the maximum number of files to be processed at each poll.

E.g. PollingMaxNumber=100

The value of this key=value pair defaults to 100.

QueryPort

The port number by which queries are sent to the DRE. Again if you are
using more than one DRE specify the query ports separated by commas.

E.g. QUERYPORT=2000,6000

IndexLocalFile

Specifies if the local IDX file is to be indexed or if it will be sent over the
socket.

You can set either IndexOverSocket=1 or IndexLocalFile=0 (this is the
default) or you can set IndexOverSocket=0 or IndexLocalFile=1.

The two pairs are equivalent. If both settings are present then
IndexOverSocket takes precedence.

IndexLocalFilePathReplace

IndexLocalFilePathString

When you are doing IndexOverSocket=off or IndexLocalFile=on (both are
equivalent) - that is you are sending the filename to the DRE rather than the
data over the socket, you need to tell it how to change the path so that if the
IDX file is in c:\hello\a.idx, but the DRE is on another machine, so for the
DRE it will be d:\hello\a.idx then you can set these two parameters

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 178

Key Description

IndexMode=REFERENCE

Allows the killing of duplicates using methods other than the standard
URL/reference match. Options include:

REFERENCE – reference ONLY

MATCHNN – conceptual match ONLY (i.e. if the documents are similar
above a certain threshold NN)

REFERENCE2MATCHNN –

This means that it will check all databases for reference duplicates rather than
the one database that is being indexed into.

[Fields] Section

This section specifies the fields that are to be indexed in documents.

Table 52 – [Fields] Section of DRE Configuration File

Key Description

NumFields=n n is the number of fields to be included in the DRE.

Field0=DREReference

Field1=Index10.DRETitle

Field2=myfield

Fieldn=FIELDNAME

This indicates the name of the nth field. Sequential fields to be indexed into
the DRE. Field 0 and 1 are set as follows:

Field0=DREReference.
Field1=Index10.DRETitle
Field2 onwards are user specified.

The DRETitle should be specified with ‘index10.’ to indicate it is to be
indexed, and have approximately 10% higher weighting.

E.g. Field2=Summary

Fieldn=INDEX.Name

Fieldn=MEM.sz,Name

INDEX.Name This means that when documents are indexed into the
DRE, the field Name must be indexed as well, it is recommended that this be
enabled.

If Memfields=1 in the [Server] section, Fieldn ,it must have the following
format: Fieldn=MEM.sz,name

sz is the number of bytes to be stored in memory

name is the name of the nth field

The Mem value indicates that the field is to be held in memory for faster
structured field queries.

E.g. Field0=mem.224,summary=

The full field is always saved to disk but only the first sz characters will be
considered for the memfield query.

Whenever the INDEX and MEM are used together, Index must come before
MEM.

E.g. Field0=INDEX.MEM.200,myfield

Beware the MEM function will utilize computer resources, this facility is not
necessary unless structured field searching is a constantly used process.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 179

Key Description

DATEFIELD=name

Informs the DRE that a particular field in the idx file contains the date. This
field must come AFTER the DREDATE specifier in the idx file. For example,
#DREFIELD mydate=”1999/10/25”

This field does not necessarily have to be declared as a structured field. You
need to change DRE.INI thus:

[Fields]

DATEFIELD=mydate

Field0=….etc

Note the format: YYYY/MM/DD or Number of seconds since 1970 or NOW

You can choose other names if required. In the event of there being multiple
fields called DREDATE, the DRE will use the one that appears last in the idx
file

[Cache] Section

This section is internal and the parameters contained should not be altered unless specified to
do so by Autonomy.

[IndexSummary] Section

This section governs how the DRE indexes the summary of each document into a structured
field at index time.

Table 53 – [Index Summary] Section of DRE Configuration File

Key Description

METHOD=QUICK/CONCEPT

Set Summary Type:

For METHOD=QUICK:

MINWORDS=n Set minimum length of summary

MAXWORDS=n Set maximum length of summary

FIELDNUM=n Set number of field to store

summary in

For METHOD=CONCEPT:

FIELDNUM=n Set number of field to store

summary in

SENTENCES=n Number of sentences to include in

summary.

[IndexCache] Section

This section specifies details of the cache used for indexing documents into the DRE. This is
used to increase the indexing speed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 180

Table 54 – [Index Cache] Section of DRE Configuration File

Key Description

MaxSize=n

Size of the index cache in Kb. The larger the value of MaxSize, the faster the
indexing process. This is dependent upon the size of the individual idx files.
The recommended maximum size is 20000. Past this size the potential to
slow down the indexing process increases.

[dbname] section

This section is used to hold information about the database in the DRE with name dbname.

Table 55 – [dbname] Section of DRE Configuration File

Key Description

ExpireTime=nn
nn is the number of hours that documents will reside in database dbname
before they expire.

ExpireIntoDataBase= name

name is the name of the database in the DRE where expired documents from
database dbname will be moved. If this is not specified then expired
documents will be deleted from the DRE. Expiring databases from one
database into another will only function if you store content.

MaxHits=n
n is the maximum number of documents to return from database dbname
when the DRE is queried.

ReadOnly
Specifies that the database dbname is to be read only. Indexing will not be
allowed.

StoreContent This allows the database to store original content of documents

DateRange This allows queries to be limited by date range for this database

Securityn=MySecuritySection

N is the number of the database in the DRE that a security check corresponds
to. The security check is used to only show relevant documents to a query
that a certain user is allowed to see.

MySecuritySection is the name of the section in the DRE.INI file that contains
the settings for the security check corresponding to database n.

 [MySecuritySection] Section

This section is used to hold information about security checks corresponding to certain
databases. The security check is used to determine which documents certain users can
access.

Table 56 – [MySecuritySection] Section of DRE Configuration File

Key Description

Library=MySecurityDLL.dll
This specifies the DLL that performs the access control function determining
which documents certain users can access.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 181

Key Description

Key=value

Multiple key=value pairs can be used

E.g. ACLUsername=admin to set any additional parameters that the
DLL needs to use. These settings are optional and will vary according to
how the access control check is implemented.

ACLPassword=adminpass

HTTPFetch configuration

This section details all of the HTTPFetch configuration parameters available, provides
descriptions, default values, the range of possible values and specifies which sections the
parameter can be used in.

[License] Section

This section contains the licensing details, including the license holder’s name and the license
key. Do not edit this section, as this could stop the POP3Fetch from functioning.

Table 57 – [License] Section of DRE Configuration File

Key Description

KEY
License key.

E.g. KEY=************************

HOLDER
License holder’s name.

E.g. HOLDER=AUTONOMY

[Default Section]

Table 58 – [Default] Section of DRE Configuration File

Key Default Range Description

IndexMode
REFERENCE2M
ATCH NA

Allows the killing of duplicates using
methods other than the standard
URL/reference match. Options include:

REFERENCE – reference ONLY

MATCHNN – conceptual match ONLY
(i.e. if the documents are similar above a
certain threshold NN)

REFERENCE2MATCHNN –

This means that it will check all databases
for reference duplicates
rather than the one database that is being
indexed into.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 182

Key Default Range Description

Nsockets 16 1-512
The total number of sockets to share
between the spiders

SpiderCycles Infinite 0 Number of times to repeat (-1 for infinite

SpiderStartTime The time the spider will start

SpiderRepeatSecs 100000 1- Number of seconds between each cycle

SpiderRepeatInterval Null
This expresses the time between each cycle
in human readable form eg # hours

SpiderPath ./ Path to spider files

SpiderSetFlowRate

4096kbps for a
single spider

8192kbps for
whole Fetch

This is the byteflow ratefor the
spider.

Eg. To set the spiders to use a
maximum of 64kbps each and 2Mbit
in total:

MaxKBPS=64

MaxGlobalKBPS=2048

NB: It is better to set this total
somewhat lower in order not to kill
your bandwidth.

IndexPath ./
Path to index files with respect to
DRE

ImportPath ./ Path for import

DreHost NA Any IP
The engine (DRE) machine’s IP
address

[Default Spider] Section

Table 59 – [Default Spider Section] Section of DRE Configuration File

Key Default Range Description

IndexPort NA Any port The engine (DRE) indexing command port

Database NA NA The database to use in the engine

ProxyHost “”
Host name or IP address of proxy server host
to use

ProxyPort 80 Any port Port number for proxy server

ProxyUsername “” Any Username for proxy server

ProxyPassword “” Any Password for proxy server

Directory Spider name Any
Directory into which to spider, the default is
to use a subdirectory with the same name as
the spider in its working directory

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 183

Key Default Range Description

LogFile None Any
File for the spider to output logging into. This
should only be used for debugging/tuning
spiders, as log files become large very quickly

LogFileMaxSize 4MB Any The maximum size of the logfile in kilobytes.

Depth 99 0-512 Maximum depth to spider from the URL

TotalSize
1572864000/1.5
Gbytes/

This specifies the total size of the spider in
Bytes.

To set the fetch to get more than 2Gbyte for a
single spider, set the TotalSize=10000mbytes
and it will fetch 10 GBytes, 10000000kbytes
will do the same.

SiteDuration 43200/12hours/ 0-
aximum time to spend spidering the URL
(sec.)

MaxPages 1E+08 1- Maximum pages to retrieve from the URL

FollowRedirect TRUE
TRUE

FALSE

Accept and follow redirects. Often the spider
will be redirected to another site (see below).
NB: A redirect counts as another depth.

StayOnSite TRUE
TRUE

FALSE

Specifies whether the spider should only
spider pages on the site with the same
domain as the initial URL

PageDelay 0 0-

Specifies the ‘politeness’ of the spider. This
will automatically ensure that page retrievals
from a site will have an average delay of no
less than this number of seconds between
them.

MaxKBPS 4096
This specifies the maximum rate at which to
transfer data for each spider.

MaxGlobalKBPS 8192
This specifies the maximum rate at which to
transfer data for all spiders.

MinPageSize 200
Minimum page size in bytes (pages smaller
than this will not be saved for indexing)

MaxPageSize 10000000 Maximum page size In bytes

MaxLinksPerPage 100
Maximum links per page (used to prevent
indexing of index pages, they are however
spidered as normal)

PageTimeout 45

Maximum time to spend on one page
(including connect and request send). Failed
pages will be retried 3 times with the same
timeout (sec.)

PageDuration 3600/1 hour/ The time to spend on each page.

Extensions SPIDER_ALLDOCS Any
Comma separated list of wild cards
specifying acceptable extensions to follow.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 184

Key Default Range Description

MustHaveCSVs “” Any
Comma separated list of wild card
expressions that must appear for the
page/link to be acceptable.

MustHaveCheck 0

1: URL

4: Header

8: Body

64: Case
insensitive

128: Prevent
Request

Where to search for the above list of
expressions, OR these values together for
multiple.

CantHaveCSVs “” Any
As above, but the page cannot have these if it
is to be accepted

CantHaveCheck
SPIDER_PAGEHEA
DER

1: URL

4: Header

8: Body

As above.

DateCheck 0

0: Date last
modified

1: URL

4: Header

8: Body

64:Case
insensitive

128:Prevent
Request

As above, specifying where to check for a
date

AfterDate -9000 0 - -9000
Page must have been modified within this
many days from today (negative is backward
in time)

BeforeDate 0 0 - 3000 File must be older than this number of days.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 185

Key Default Range Description

DateFormats “”

MM/DD/YYYY,

SHORTMONTH-
DD-YY

DD-MM/YY,

DD-
LONGMONTH
YYYY,

etc.

Comma separated date formats. These
format specifiers are used whenever dates
can be specified in the DDMMYY format
style strings.

Format specifiers:

YY – Year (2 digit) , e.g. 99 or 00 or 01 etc.

YYYY - Year (4 digit), e.g. 1999 or 2000, 2001
etc

LONGMONTH – January, March, August
etc.

SHORTMONTH -.Jan, Mar, Aug etc.

MM – Month (2 digit) 01, 10, 12 etc

M+ - Month (1/2 digit) 1,2,3,10 etc.

DD – Day (2 digit) 01, 02, 03, 12, 23 etc.

D+ - Day (1/2 digit) 1, 2, 12, 13, 31 etc

HH – Hour (2 digit) 01, 12, 13 etc.

H= - Hour (1/2 digit)

NN – Minute (2 digit)

N+ - Minute (1/2 digit)

SS – Second (2-digit)

S+ - Second (1/2 digit)

ZZZ – Time Zone (GMT, EST, PST, etc.)

Examples:

// Dates with 1/2 digit days

DateFormats=D+/SHORTMONTH YYYY,
DDMMYY

//Quoted string to allow spaces and commas
etc within the format

DateFormats=”D+SHORTMONTH YYYY”,
“Date: D+ LONGMONTH, YYYY”

//Directory style dates

DateFormats+D+/M+/YY, MM/DD/YYYY
etc.

For more detail, please refer to the appendix

CheckBeforeDownload FALSE True/false

Checks the parameters which have been set.
If the site is ruled out by these then the file
will not be downloaded, and therefore no
links from that page will be followed.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 186

Key Default Range Description

LoginMethod
SPIIDER_LGNNON
E

FORM

AUTHENTICAT
E

Login front page method type, FORM or
AUTHENTICATE

LoginURL NULL Any URL to use for FORM login page

LoginUserField username Any Name of the login username field

LoginUserValue “” Any Value to assign to username field

LoginPassField password Any Name of the password field

LoginPassValue “” Any Value to assign to the password field

LoginFieldName0 Any Name of additional field

LoginFieldValue0 Any Value of additional field

LoginFieldNameN Any Optionally supply ‘N’ fields

SecurityType

NONE

SSL_V23

SSL_V3

SSL_V2

TLS_V1

Specifies the type of SSL used to retrieve
https:// prefixed URLs. If you do not wish
to spider secure areas of sites wither remove
this or set to NONE.

CookieNameN Any Cookie name to use for cookie based logins

CookieValueN Any Cookie value to use

SpiderStartDeleteOld FALSE
TRUE

FALSE

Specifies whether to strip directories of
downloaded files before another spider cycle
takes place.

BatchProcess IMPORT

IMPORT

INDEX

NONE

Specifies the batch process to perform (see
section Error! Reference source not found.)

BatchSize 50 May-00

Specifies the batch size (number of
documents downloaded before executing the
batch process). If 0, batch processing is turned
off.

FixedFieldName0 NA Any String
Specify the name of a fixed value field to be
added to retrieved documents indexed into
the DRE

FixedFieldValue0 NA Any String
Specify the value of a fixed value field to be
added to retrieved documents indexed into
the DRE

FieldName0 NA Any String
Specify the name of a field to be added to
retrieved documents indexed into the DRE

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 187

Key Default Range Description

FieldStart0 NA Any String
Specifies the string identifying the start of a
field value to be added to retrieved
documents indexed into the DRE

FieldStop0 NA Any String
Specifies the string identifying the end of a
field to be added to retrieved documents
indexed into the DRE

FollowRobotProtocol Jan-00
When this is set to1, it enables a process
which searches for a text file declaring what
sites can and cannot be fetched.

SpiderAs Any

Default name with which a particular spider
identifies itself to sites. (this controls what
pages it may access under the robots.txt
protocol)

URL “” Any string This specifies the URL to start from.

URLFile “” Any string
This is the name of the file, which contains a
list of URLs.

URLFileDelete Any string This deletes the URL file.

URLCaseSensitive
TRUE

FALSE

This specifies whether or not the URL is case
sensitive

HTTPVersion HTTP_V10

Allows the fetch to specify to the Web Servers
the http version it supports.

E.g. HTTPVersion=HTTP/1.0

DateLongMonthCSVs
(English long
versions of Months)

January-
December in
corresponding
language.

Specifies the LongMonth values. Case
insensitive.

DateMonthCSVs
(English Short
versions of month)

Jan-Dec in
corresponding
language.

Specifies the ShortMonth values. Case
insensitive.

DatePostfixCSVs
(English versions of
day postfixes. E.g.
1st,2nd etc.

st, nd, rd, th. Specifies the day postfixes. Case insensitive.

StoreSiteStructure 0 Jan-00
Specifies whether the spider should store the
structure of the Website in order to download
pages that contain new information only.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 188

Key Default Range Description

SiteStructureFlags
MONTH: 128
(default)

SiteStructureFlags
=

Ø HOUR: 16

Ø > DAY: 32

Ø > WEEK: 64

Ø > MONTH:
128 (default)

Ø >PREVENT
URLCHEC
K: 16384

Sets the maximum time before a URL is
downloaded regardless of whether it is
expected to have changed.

NavLinkDefStartCSVs
This defines the start of the html that defines
the navigation links to follow as start/end
pairs

NavLinkDefEndCSVs
This defines the end of the html that defines
the navigation links to follow as start/end
pairs

NavLinksToFollow
SPIDER_FOLLOW
ALL

0 – Don’t follow
any links

1 – Frames

2 - Hrefs

4 – Location
(Javascript
location.href=)

8 – HttpEquiv
(HTML redirects)

SPIDER_FOLLO
WALL

Indicates the type of links to follow

NavSiteCheck 129

1 – Check URL

64 – Case
Insensitive

128 – Check
before Download

Criteria for determining whether or not to
spider the site

NavSiteAllowCSVs “”
Character String.
Can include
wildcards

Comma separated string of characters which
must appear in the URL of the sites that are to
be spidered

Use \? and * to mean actual characters '?'
and '*' as opposed to the wildcard entries ?
and *

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 189

Key Default Range Description

NavSiteDisallowCSVs “”
Character String.
Can include
wildcards

Comma separated string of characters which
must not appear in the URL of the sites that
are to be spidered

Use \? and * to mean actual characters '?'
and '*' as opposed to the wildcard entries ?
and *

NavDirCheck 129

1 – Check URL

64 – Case
Insensitive

128 – Check
before Download

Criteria for determining whether or not to
spider the directories of the root site(s).

NavDirAllowCSVs “”
Character String.
Can include
wildcards

Comma separated string of characters which
must appear in the URL of the Site directories
that are to be spidered. Use \? and * to
mean actual characters '?' and '*' as opposed
to the wildcard entries ? and *

NavDirDisallowCSVs “”
Character String.
Can include
wildcards

Comma separated string of characters which
must not appear in the URL of the site
directories that are to be spidered. Use \? and
* to mean actual characters '?' and '*' as
opposed to the wildcard entries ? and *

LogFileMaxSize 4MB numerical

Specifies the maximum size of .log file. Once
it has reached this limit it is moved to a file
called .log.previous and a new .log file is
started. .log.previous is overwritten the next
time this happens.

IndexOverSocket FALSE TRUE/ON/1
Specifies that indexing is to be done over the
socket.

ImportPath Path to index files with respect to HTTPFetch

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 190

Appendix B: Detail of autoindexer.cfg Sections

[Configuration]

This section governs the basic Automatic Indexing operation. It has the following key=value
pairs:

Table 60 – [Configuration] Section of the autoindexer.cfg File

Key Description

PollingPeriod
This specifies the time interval in milliseconds between each Autoindexer poll.

E.g. PollingPeriod=5000

PollingMethod

This specifies whether the files to be processed by the Autoindexer are read
from a file or from a directory. The value of this parameter can be either:

1 for ‘file’
2 for ‘directory’
E.g. PollingMethod=2

NB. When using Autoindexer to process a large number of files on NT, you
must use File Polling and not Directory Polling. File Polling simply looks at the
filenames listed in a file and then processes them (which is more scalable
because it does not require any directory tree polling).

On UNIX making a list of file names is easy. Use Is and send the output to a file.

On NT this does not work so to make a directory listing on NT set the
following:

[configuration]

FilenameOutputMode=1

in the configuration file and this prints out the list of all the filenames that Scan
would process in directory mode.

All settings for directory polling, recursion, musthaves, canthaves, dates etc. are
taken into account when listing the filenames. Note, that this setting should go
in the configuration file and not in each job section. This will only list the
filenames in the directories of the first job (or the default one). After that it will
quit. If you have more than one job, and want to create more than one listing of
filenames, just move the appropriate job to the top and run it. This mode prints
the filenames to stdout, so to save it into a file just pipe it out (“autoindexer.exe>
fileslist.txt”

RemoveLogFileOnStart

This indicates whether or not to remove the Log file before running
Autoindexer. The value for this parameter can be either:

1 or on for ‘Yes’
0 or off for ‘No’

E.g. RemoveLogFileOnStart=0

The value of this Key=value pair defaults to false (i.e. 0 or no).

Number
Represents the number of jobs that are to be performed by a

particular Autoindexer.

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 191

Key Description

N Represents the name of job number n. n=0 for the first job.

MaxLogKBytes
Represents the maximum size the log file can reach before it is renamed as
.log.previous and a new one is produced. It is measured in Kilobytes.

[Default]

This section governs the default configuration settings. The values in this section are
employed for any job stated in the [Configuration] section, that does not have its own
definition entry.

Table 61 – [Default] Section of the autoindexer.cfg File

Key Description

deleteEscapeReferences

Boolean value that when set to 1 will escape references when doing deletion.
This is needed when trying to remove documents with spaces in the reference.
You will need to use it with DRE version 3.0 and setting UNESCURL=1 in the
DRE.INI

deletePathReplaceUpToSlash

If PollingAction=7 or PollingAction=8, this is used to specify a string that
is to be replaced up to a certain’/’. This is used so that a single portion of
many strings which contain different substrings can be replaced as
opposed to just one particular word.

E.g. In the case where the files in the queue are

C:\a\b\hello,c:\a\c\hello

And c:\b\a\hello

deletePathReplaceUpToSlash=3

Would replace the portion up to the third back-slash in each string.

DeleteReferenceFromContent

Boolean value telling Autoindexer when it deletes files that the reference may
have been obtained from the document content. The setting is either on (1) or
off (0). Instead of using the usual file reference for example c:\data\myfile this
setting enables the reference to be obtained from the document content.

DeleteReferenceStart
Start tag to be used when obtaining the reference from content. E.g.
deleteReferenceStart=<DOCID>

DeleteReferenceEnd

End tag to be used when obtaining the reference from content. E.g.
deleteReferenceStart=</DOCID> So using the deletereferencestart and end,
the content found between the two will be used as the document reference.
These settings only apply when deleting documents, as to delete all the
Autoindexer does is send a delete command to the DRE with a reference.

If you leave either of these start or end parameters blank then it defaults to
beginning and end of file. You can also use \n, \r, \t in the settings so that you
can delimit the reference by return characters.

directoryAfterDate
The number of days before today that the document must have been modified.

E.g. directoryAfterDate=-1 (i.e. yesterday)

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 192

Key Description

directoryBeforeDate
The number of days after today that the document must have been modified.

E.g. directoryBeforeDate=5 (i.e. 5 days from today)

DirectoryCantHaveCSVs

This specifies the string that must not appear in the directory path of a spidered
document.

E.g. directoryCantHaveCSVs=*.sys,*.bat,*.exe

DirectoryFileMatch
This is a wild card specification of which files in the directory to process.

E.g. directoryFileMatch=*

DirectoryMustHaveCSVs

This specifies the string that must appear in the directory path of a spidered
document.

E.g. directoryMustHaveCSVs=*/temp/*

DirectoryPathCSVs

This specifies the directory in which lie the files to be processed.

E.g. directoryPathCSVs=D:\projects\autoindexer\files

This can be a comma separated list of directories which means that more than
one directory can be processed.

DirectoryPathRecurseMatchCSVs

This setting indicates a set of wildcards to match against whilst recursing the
directory tree. This is different from directoryMustHaveCSVs in that the
wildcard match is done against the recursion path not the full path of the file.
Hence, it's more efficient as it won't recurse directories that it doesn't need to do.
So for example:
directoryPathCSVs=C:\files\
directoryPathRecurseMatchCSVs=*01*,*02*
will process:
c:\files\199901
c:\files\199902
It will not do:
c:\files\morefiles\199901
c:\files\morefiles\199902
as the match is done at every recursive step.

DirectoryRecurse

This indicates whether or not to recurse into directories. It can be either:

1 or on for “Recurse”
0 or off for “Don’t Recurse”

E.g. directoryRecurse=off

DREHost
IP address where the DRE resides. Should you require to index into more that
one DRE separate the IP addresses by a comma. E.g.
DreHost=localhost,120.7.0.0

FilenameOutputMode
Boolean value where, if set to 1, will create a file listing all the files that are to be
processed. It is used so that if you need to do file based processing you can
create a list of files that need processing from a directory.

FilePollFilename
This specifies the filename from which the list of files to be processed is read.
E.g. filePollFilename=queu e

FileBaseDirectory

This is the directory path to attach to each file in filePollFilename. You can
specify either the full paths or just the File names inside the queue file.

E.g. BaseDirectory=c:\Files\

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 193

Key Description

importIDXFilesAction

Specifies what to do with idx files that have been processed. This can be either:

0: delete IDX file
1: move the IDX file to another directory
2: leave in directory

importIDXFielsMoveTo
If importIDXFilesAction=1, this is the full path that specifies where the idx files
are moved to.

ImportPathReplaceString Specifies the string that will replace the substrings of files in the queue.

IndexOverSocket
This indicates if the file to be indexed is to be sent over the socket or if it is local,
see IndexLocalFile

IndexPort

The port number by which indexing commands are sent to the DRE. If this line
is not present or is set to 0, then indexing will not be available. If you are using
more than one DRE specify the index ports separated by commas.

E.g. INDEXPORT=2001,6001

MoveToDirectory
This specifies which directory to move to when PollingPostAction is set to 2.

E.g. MoveToDirectory=D:\projects\autoindexer\processed\

PollingAction

This specifies the action to perform when polling. The value of this parameter
can be either:

1 for ‘indexing idx files to a DRE’ (idx files are files that are in hash form. See
Section 4.1)

2 for ‘importing files in various formats and indexing them into a DRE’
7 for import+index+delete this will import files to an IDX format, index them

and also delete any documents from the DRE that have been removed from
the local file structure

8 ‘delete from a DRE’

E.g. PollingAction=2

PollingPostAction

This specifies the action to perform after the file has been processed. The value
of this parameter can be either:

0 for ‘do nothing’
1 for ‘delete the file after processing’
2 for ‘move the file to another directory’. It will keep the subdirectory structure.

The value of this key=value pair defaults to 0.

E.g. PollingPostAction=0

When moving the originally scanned files somewhere else, the subdirectory
structure is retained.

BOOL FileCopyKeepDirStructure(charsRoot1, charsFilename, charsRoot2,
charsMode)

PollingMaxNumber

This specifies the maximum number of files to be processed at each poll.

E.g. PollingMaxNumber=100

The value of this key=value pair defaults to 100.

QueryPort

The port number by which queries are sent to the DRE. Again if you are using
more than one DRE specify the query ports separated by commas.

E.g. QUERYPORT=2000,6000

US DEPARTMENT OF EDUCATION
STUDENT FINANCIAL ASSISTANCE
SFA MODERNIZATION PARTNER

ITA DETAILED DESIGN DOCUMENT
VOLUME 2

INTERNET ARCHITECTURE

OCTOBER 13, 2000 16 – 16.1.2 194

Key Description

IndexLocalFile

Specifies if the local IDX file is to be indexed or if it will be sent over the socket.

You can set either IndexOverSocket=1 or IndexLocalFile=0 (this is the default)
or you can set IndexOverSocket=0 or IndexLocalFile=1.

The two pairs are equivalent. If both settings are present then IndexOverSocket
takes precedence.

IndexLocalFilePathReplace

IndexLocalFilePathString

When you are doing IndexOverSocket=off or IndexLocalFile=on (both are
equivalent) - that is you are sending the filename to the DRE rather than the
data over the socket, you need to tell it how to change the path so that if the IDX
file is in c:\hello\a.idx, but the DRE is on another machine, so for the DRE it
will be d:\hello\a.idx then you can set these two parameters

IndexMode=REFERENCE

Allows the killing of duplicates using methods other than the standard
URL/reference match. Options include:

REFERENCE – reference ONLY

MATCHNN – conceptual match ONLY (i.e. if the documents are similar above
a certain threshold NN)

REFERENCE2MATCHNN –

This means that it will check all databases for reference duplicates rather than
the one database that is being indexed into.

